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PASSIVE GEODETIC SATELLITE INFLATION RATE STUDY 

by Ernest0 Saleme 

SLJMMARY 

This study comprises the mechanics of the inflation process 
of a spherical balloon orbiting at high altitude. Mathematical 
models suitable for the two basic stages of the process (deploy- 
ment and inflation) are developed, and numerical solutions using 
high speed digital computers are presented. 

A method is also established for determining the stresses 
developed in the skin during the inflation process. The elas- 
ticity of the transverse (accordion) folds is analyzed by means 
of an equivalent spring, and that of the meridian pleats by us- 
ing the large deformation theory of beams. 

The conditions (modeling laws) that a model test must sat- 
isfy in order to accurately describe the behavior of the proto- 
type are established. The effects of lack of compliance with 
these modeling laws are discussed. 

Computer programs for the solution of the two stages of 
the process and several numerical examples are included. 

INTRODUCTION 

As part of the National Geodetic Satellite Program, a 
Passive Geodetic Satellite has been launched into a near polar 
orbit. The aluminum coated spherical satellite can be observed 
from the ground as a point source of light while it reflects the 
incident light. Simultaneous photographs of this light source 
taken from different points on the earth surface will permit the 
determination of the spatial coordinates of these points and, 
hence, with an adequate network of ground stations, a purely 
geometric determination of the shape and size of the earth can 
be obtained. 



The inflatable sphere is fabricated by joining a number of 
gores of thin plastic film coated with vapor-deposited aluminum. 
During fabrication the material is pleat folded along.meridian 
lines and then the whole assembly is placed in a long narrow 
plastic sleeve and evacuated. After evacuation the pleat folded 
balloon assembly is placed into a spherical canister by folding 
it in a rotating accordion pattern. The canister is then evacu- 
ated and sealed. 

When the canister opens in space, it has been observed that 
the balloon deploys by opening the accordion folds and inflates 
until it assumes the final spherical shape. The first phase, 
balloon erection, is dominated by the deployment of the accordion 
folds while the final phase is dominated by the unfolding of the 
pleat folded gores by inflation. Between these two relatively 
simple phases of deployment and inflation there is a transition 
phase where both accordion folds and pleat folds are being un- 
folded. 

Previous theoretical analyses of the erection process were 
based on a single stage spherical mathematical model. The 
present study has evolved a two stage model; the first stage is 
a deployment model and accounts for the deployment of the accor- 
dion folds; the second stage is an inflation model which accounts 
for the unfolding of the pleat folded gores. 

The present two stage model does not account for the trans- 
ition phase between deployment and inflation but instead consid- 
ers sequentially the deployment and inflation stages. Justifica- 
tion for this procedure actually rests on the lack of an adequate 
mathematical model representing the transition stage. The actual 
deployment will be slower than predicted by the present two stage 
model but, on the other hand, the actual inflation will start 
sooner than predicted. Due to the compensating nature of these 
effects, the total erection time should be close to the predicted 
value. Likewise, the stresses, velocities, accelerations, etc., 



should be close to the predicted values except near the end of 
deployment and near the beginning of inflation. 

Finally, the scaling laws that must be satisfied by a model 
tested on the ground are established in general terms. 

THE INFLATION PROCESS 

During fabrication, the material is pleat folded along mer- 
idian lines and afterwards folded again accordion wise in a 
transverse direction and placed into the canister. 

When the canister opens in space, the folded balloon first 
deploys by opening up the transverse folds and assuming an elon- 
gated, cigar-like shape (Deployment Stage) and then inflates by 
opening the meridian pleats, assuming an ellipsoidal form with a 
star shaped cross section, which finally becomes a sphere (Infla- 
tion Stage). 

Deployment Stage 

This stage is characterized by a large increase in the 
polar diameter and a small variation in the transverse dimen- 
sions of the balloon. In order to analyze the mechanics of 
this stage, we make use of a mathematical model. A continuous 
structure in the shape of a shell of revolution abollt the polar 
axis is substituted for the aaccordion folded (sectionally con- 
tinuous) balloon. The substitute structure is of the same 
total length and equatorial cross section as the actual balloon. 

Moreover, we assume that, during this stage, the cross sec- 
tions (normal to the direction of deployment) remain invariant, 
i.e. all points move parallel to the direction of deployment 
(polar axis) (Figure 1). 

The mass between two parallel circles, a meridian distance 
ds apart will be 

27~ ml x1 dsl = 27~ m x ds 

3 
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where 

ml, m are the masses per unit area of the full 
sphere and the deployment stage balloon respectively. 

Xl' x are the radius of the parallel in the full 
sphere and the deployment stage balloon respectively. 

dsl=ds is the length of the element of meridian arc. 

Hence 
x1 dsl 

m=mlY-YE (1) 

Assuming that the meridian has a cosine shape 

x = a cos 5-Y 
2L (2) 

where 
a is the equatorial radius of the balloon during deployment. 

Y is the distance from the parallel circle to the equator. 

L is the distance from the tip (pole) to the equator. 

For a very elongated shape, as is the present case, the distance y 
will differ but little from the distance s measured along the 
meridian, i.e. we can set 

S'Y (3) 

Hence, for the full sphere 
- 

x1 = R1 cos 2 = R ~0s = " 
R1 IL 2q 

where Y 1=s1; L1+ Rl are the distances to the equator, measured 
along the meridian, from the parallel circle and the pole in the 
fully deployed balloon. The assumption that the dimensions of 
the cross section do not change during deployment implies 

x = a cos IT y1 5 E = a cos 7 7 = a cos 7 

5 



where 

is independent of time. 

Equation (1) finally yields: 

7r y1 
R1 'OS 2F dyl R1 Ll R1 

2 

m=m --= 
1 =mla L 5 ml aL 

a cos 5 f 
7 

The total mass of the balloon is given by 

M = 4 7~ ml RL 2 

Hence 

m=& 

(7) 

(8) 

(9) 

The differential equation of motion during deployment is obtained 
in the following way: 

We consider an element of the balloon a distance y from 

the equator. The mass of the element will be 

7TM 2n m x ds = ~1 cos $ E dY 

and the inertia force will be 

Fl = - %; cos $ t dy 
a2u(y,t> 

a t2- 
(10) 

where U(y,t) is the displacement and the minus sign indicates 

that the inertia force is opposed to the motion. We assume that 

the force due to the accordion folds is of the form 

i.e. is proportional to the deformation (in the case of an 

elastic bar of constant cross section and small deformations F(y) 



will be constant). The net force exerted by the accordion folds 
on the element will be then 

v dy (11) 

The internal pressure, -p(V,T) is assumed to be uniform inside 
the deploying balloon and depending only on the volume and ab- 
solute temperature and the net force exerted by it on the element 
will be 

F3 = d 2 
-dyTX p(V,T) dy = - 27r p(V,T) x $ dy (12) 

The differential equation of motion is obtained by setting 

Fl + F2 + F3 = 0 

or 

- +'(Y) wdy 

- 2 7~ p(V,T) x $$ dy = 0 

Using Equation (5) we obtain after simplification 

7TM -g z cos 3 - -I- $y F(y) v 
at2 

7r2a2 - L p(V,T) sin 3 cos 3 = 0 (13) 

Comparing the first and last terms of Equation (13) we see that 
they will have the same form if we take U(y,t) to be: 

U(y,t) = (L-Lo) sin 5 E = (L-Lo) sin 8 (14) 



where L=L(t) is half the length of the deployed balloon at 
time t and 

L (t=O) = Lo 

is the initial half length of the folded balloon (at the instant 
the canister opens). The displacement U(Yd is seen to sat- 
isfy the conditions 

U(o,t) s 0 

WY,4 = u&o) = Od 

Substituting Equation (14) into (13) we obtain: 

?j sin Sa cos 3 
2 

dL + (L-L,) !& F(y) cos 3 
dt2 

- 27~ a2 p(V,T) sin 3 cos 3 = 0 (15) 

In Section IV it is shown that the force developed by the elasti- 
city of the accordion folds can be expressed as: 

F(y) = F(L) cos + + = F(L) cos 3 (16) 

Substituting Equation (16)into (15)we obtain, after simpli- 
fication: 

- 2) F(L) + 2 a2 p(V,T) 1 (17) 

where the dots indicate differentiation with respect to time. 
Multiplying both sides of Equation (17)by 

Ldt = dL 

and integrating, we obtain: 
t 

-i,dt= +) F(L) + 2 a2p(V,T)] dL 

0 0 LO (18) 

8 



or 

(1'L L, F(L) + 2 a2 p(V,T) dL 1 (19) 
From which we finally obtain 

L 

t = dL 
WV 

Cl- L 5) F(L) + 2 a2 p(V,T) dL 
3 

The internal pressure p(V,T) is made up of two parts: 

a> The pressure due to the residual gases left inside the 
balloon during fabrication is the first part. Assuming that 
they behave like perfect gases, their partial pressure will fol- 
low the law 

'rv povo - = - = constant T 
TO 

hence 
v oT 

P, = PO r T 
0 

(21) 

where 

vo,v are the initial and present volume enclosed by 
the balloon. 

To,T are the initial and present values of the absolute 
temperature of the balloon. 

poypr are the initial and present values of the pressure 
due to the residual gases. 

b) The pressure due to sublimation of the chemical powders, 
if any, that are placed inside the balloon for the purpose of 
completing inflation and sustaining the spherical shape by pro- 
viding the required internal pressure once the full inflation is 
attained, is the second part. 

9 



The corresponding partial pressure follows the Classius-Clapeyron 
equation 

c2 log p, = Cl - T (22) 

where 

PC 
is the pressure generated by sublimation. 

T is the absolute temperature. 

c1'C2 are constants depending on the nature of the chem- 
icals. The total pressure inside the balloon will be equal to 
the sum of the two partial pressures 

P = P, + PC (23) 

In Appendix A it is shown that, for the chemicals and tempera- 
tures here considered, there will be only a small change in tem- 
perature during the whole process. Moreover, the rate at which 
heat is accumulated in the balloon during deployment is larger 
than the rate necessary to maintain the sublimation pressure. 
Hence, we can write 

vO 
P, = PO v 

PC 
= constant. 

Taking into account tllat during deployment the vo 
tional to the length we have finally 

LO 
P = PC + PO r 

lume is propor- 

(24) 

In Section III, the following expression is derived for F(L) 

(2% 

with 

10 



where 7T3 
%3 = m N* 7.r .ERlh; C= 7.05571611 

Cl = 0.29845520 D = 5.74280591 

A= 0.49614662 E= 1.82244592 
B- 2.63150274 a = 0.45694658 

Substituting Equation (24) and (25) into Equation (17) we obtain, 
on account of Equation (26): 

A-B e + C(e)"- D-(k)'+ E(kr (1 Lo I 
-- 

L2 L1 

1 L 
+ 2a2 pc+p,e 

il 
a~$~l.O 

(27) 

Multiplying both sides of Equation (17) by 2Ldt = 2dL and inte- 
grating we obtain finally: 

i =ds[3$/1 - g)2+ 2a2 [pc($- - 11 
Cl 

11 
l/2 

+ p,log + O-= 
0 

-+a 

;. J/~[9[9(1-+l)2-+(+)2 (-&I2 - l] 

+ [A+B ?)O-+ (+- - I)- (B+C ?)+ log + + (" +$) 

(28) 

In Appendix B a computer program for the integration of 
Equation (20) using Equation (28) with provisions for the case 
when Equation (18) cannot be readily integrated is presented and 
numerical examples are worked out. 

11 



Inflation Stage 

During the inflation stage the balloon increases its equa- 
torial dimension and at the same time decreases its polar di- 
ameter. In this way the balloon passes from the elongated shape 
at the end of the deployment stage to the final spherical shape. 

Referring to Figure 2, consider the dynamic equilibrium of 
an element of the shell, of area x de ds, between two adjacent 
meridians and two parallel circles. The mass of the element 
will then be 

m x de ds 

where 
m is the mass per unit area of the shell, 

X is the radius of the parallel circle, 

dO is the angular distance between the meridians, and 

ds is the meridian distance between the parallel circles. 

Let ic', j; be the accelerations in the horizontal and vertical 
directions. Then the inertia forces will be 

- m x de ds i; (29) 

- m y dC3 ds y (30) 

where the dots indicate differentiation with respect to time. 
Let Fe be the membrane force per unit length of meridian. Then, 
forces of magnitude Fe ds and direction tangent to the parallel 
circle will act on the lateral sides of the element. The resul- 
tant of these forces will be 

FQ ds d0 

directed towards the center of the parallel circle. 

Let F 
d 

be the membrane force per unit length of parallel 
circle in a direction tangent to the meridian. A force will act 
on the upper side of the element 

- FP x d0 cos b 

12 
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in the horizontal direction and a force 

in the vertical direction. 

On the lower side of the element we have 

Fb x de cos d + x dG.cos 8) ds 

in the horizontal direction and 

- Fd x d0 sin d + x dGl sin 6) ds 
3 

in the vertical direction. The resultant of these forces will 
have components 

g CFd x cos d) d0 ds (32) 

in the horizontal direction and 

- % CF4 x sin d) de ds (33) 

in the vertical direction. 

The internal pressure p acting on the element gives com- 
ponents 

p x d0 ds sin d (34) 

in the horizontal direction and 

p x d@ ds cos b (35) 

in the vertical direction. 

Combining Equations (29), (31), (32) and (34) and Equations 
(30), (33) and (35) we obtain after simplification 

mxG = p x sin d - Fe + as L (Fb x cos d) (36) 

. . 
mxy = p x cos d - g (Fb x sin d) (37) 

the differential equations of motion: 

14 



The total mass between two parallel circles remains constant 
during the process, hence: 

s1 m l 277 x ds = ml l 27~ x1 dsl = ml l 2n Rl sin - dsl 
Rl 

(38) 

where 

m,m 1 are the mass per unit area in the balloon and the 
full sphere respectively, 

ds,dsl are the element of the meridian arc in the balloon 
and the full sphere, 

x,x 1 are the radius of parallel circle in the balloon 
and the full sphere, and 

Rl is the radius of the full sphere. 

Equations (36) and (37) can be written 

- . . 
mx = p x sin d - FQ + g (Fd x ~0s 8) 

- . . 
my = p x cos d - & (Fd x sin d) 

where 

;= 
dsl 

mx = ml RI sin%- RI ds 

(39) 

(40) 

(41) 

During this stage, the balloon offers little resistance to 
change in the circumferential direction (opening of the meridian 
pleats) while its deformation in the meridian direction requires 
stretching of the skin. We then may assume that there is no de- 
formation in the meridian direction, that is the distance between 
two points along the meridian is invariant with respect to time,- 
or 

ds = $m= dsl (42) 

independent of time. 

15 



The assumption that the elastic strains can be neglected 
(as compared with the deformation due to inflation), implies 
that the length of a parallel circle cannot be larger than the 
length of the corresponding parallel in the full sphere, i.e. 

x5x 1 (42') 

Multiplying Equation (40) by ds and integrating, taking into 
account that 

we obtain 

2 S 

Fd x sin b = p $- - 
/ 

- " m y ds (43) 
0 

Equation (43) is equivalent to the differential Equation (40) 
hence, the system of the differential Equations (39) and (40) 
can be substituted by the single differential equation 

m ii = p x sin b - Fe + ds d (Fd x cos fh) 

where, by Equation (43) 

(39’) 

(44) 

The hoop force FG due to the opening of the meridian pleats 
is a function of the radius x of the parallel circle 

Fe = F(x) (45) 

In Section III, an expression for FQ as a function of the 
parallel radius is derived and is found that in general, it 
can be neglected. 

16 



The differential Equation (39) together with the definition 
Equations(44) and (45) and the constraint conditions Equations (42) 
and (42'), can be solved numerically by a step by step procedure 
in the following way. 

Let us assume the problem solved up to a time t=t n' In 
order to determine the position at t=tn+l=tn+ktn+l , we assume 
that the gas pressure p and the accelerations g and $ 
remain constant during the time interval tn 5 t 5 tn+l 

P = P, = P (Vn,Tn) (e.g. vO 

pn=po T ' 
Boyle/s Law) (46) 

. . . . 
x=x n+l 
. . 
Y = Yn+l (48) 

where V,,T are the volume and temperature at time t n n' BY 
integrating Equation (47) and (48) with respect to time from tn 

to tn+l we obtain the values of the velocities and displacements 
at t=tn+l 

. . 
Xn-l-l = xn + 'n+l At n+l 
. . 
yn+l = yn + ?n+l C'-tn+l 

At 2 

Xn+l = xn + XnAtn+l + iin+ + 

+ +nAtn+l 
At2 n+l 

yn-tl = yn + 'yn+l 2 

(50) 

(51) 

(52) 

The values of ;(;l+l and j;n+l are obtained by the following 
iteration process: 

1. Assuming a starting value zi+l for ?n+l,determine 
X z+l from Equation (51) 

3 
0 

At' 

Xn+l = xn + Xn'ltn+l + ';;+I .-+ (a) 

17 



2. Substitute Equation (a) into Equation (45) to obtain: 

(cl 

Determine YZ+~ from Equation (42) 

y:+1 = JS JZ W 

5. Determine $+l from Equation (52) 

.O 2 
yn+l = r 

n+l C 

0 
yn+l - yn - ynatn+l 3 

(4 

6. Determine from Equation (44) 
n+l 

Fz n+l 

S 

ii vz+l ds (f) 
I 

7. Determine %A+l from Equation (39) 

. . 1 1 
Xn+l = m sin dz+l - Fi 

n+l 
+ & Fzn+l x:+1 sin bz+l 

(g) 
3 

8. Repeat steps (1) through (7) until there is no change 

in the values of the parameters. In practice, the 

process is stopped when the difference between two 

successive values of a given parameter, say x, is less 
in absolute value than a prescribed amount. 

18 



ELASTICITY OF THE FOLDS 

Accordion Folds 

In order to evaluate the force F(y) due to the elasticity 
of the accordion folds, we assimilate the folded balloon to a 
spring so that F(y) is the spring force at a distance y from 
the equator when the total distance between the ends is 2L. 
Figure 3 shows the centerline of a general fold between two con- 
secutive bends. Assuming that the cross section at the bends re- 
mains horizontal, the differential equation of the elastica can 
be written in the notation of Figure 4. 

EJk ds @- = Pk(ak-x) (53) 

Assuming that the moment of inertia J remains constant along 
the fold, we obtain by differentiation: 

d2b - dx - = - PsinQS EJ 2 - - ' ds (54) 

where we dropped the index k. 
tion (54) by dd = -$$- 

Multiplying both sides of Equa- 
ds and integrating we get: 

($g)2 = -+g [ cosg?l - cos6gJ 

From which 

db 
dcosg - cos& 

Integration of Equation (55) yields 

Let 

sin + = k sin9 

8, k = sin 2 

(55) 

(56) 

(57) 

19 
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Substituting Equation (57) into (56) we obtain: 

a = qqr J $l-k2d@& = -@w 

0 

(58) 

where K(k) is the complete elliptic integral of the first kind. 
Multiplying both sides of Equation (55) by cosb we obtain: 

dy = ds cos# = cosd db 
co!& - cosq$ 

Integrating we get 

Which, by Equation (57), becomes 

(1-2k2 sin2e) de = d% [ 2E(k) _ K(k)] (60) 

Where E(k) is the complete elliptic integral of the second kind. 
From Equation (58) and (60) we obtain: 

+=2*-1 (61) 

Assuming all the folds to have the same height and the same 
length, we have 

(62) 

21 



-2 
Ph By plotting EJ against + for various values of k, it was 

found that P could be expressed as 

P= n2N2EJ 
4 L2 

f (4 
Ll 

(63) 

Where f( L -) is given approximately by: 
Ll 

f ci;” 
1) 

= 0.29845520 (O+ 0.45694658) 

f(L Ll) = 0.49614662 - 2.63150274(L -+) + 7.05571611(%)2 

L -5.74280591(- 
Ll 

)3 + l.82244592(+4 

(0.45694658 f +- 5 1.0) 
1 (64) 

The moment of inertia Jk of the kth fold can be taken as: 

Jk 
'k = Jocos - 
Rl 

Where 

JO 
is the moment of inertia of the equatorial cross 
section. 

'k is the distance, measured along the folded baloon, 
from the center of the kth fold to the equator; 

In view of the large number of folds, we may substitute the dis- 
crete distribution of the moments of inertia by a continuous 
one and write 

J(s) = Jocos s 
Rl 

= Jocos + + (65) 

The moment of inertia Jo at the equatorial cross section is 
given by: 

2al 3 2 
JO 

= (-!$-)2 12 hs = % alhz = % nRlhi (66) 

22 



where 

n = number of meridian pleat folds. 

27rR1 
al=n = equatorial width of the meridian pleat folds 

h, = skin thickness. 

Making F(y) = P of Equation (63) and using Equation (64) and (65) 
we obtain finally 

F(y) = 4 N2n ERlhi 
f(-- LLL, 

L2 
cos $ f = F(L) co+$ (67) 

as the force due to the elasticity of the accordion folds. 

Meridian Pleats 

During fabrication the balloon is folded along meridian 
lines and placed inside a plastic sleeve which is then evacua- 
ted. As a consequence the meridian pleats offer a relatively 
high resistance to opening, while on the other hand, the thin 
plastic skin offers very little resistance to bending. Hence 
we may represent the skin between pleat folds by a very flexible 
beam whose ends are subjected to parallel displacement with re- 
spect to each other. 

On account of symmetry, it is sufficient to consider one-half of 
the skin between two pleats. 

23 



The differential equation of the elastica for the resulting can- 
tilever beam can be written 

where E is the modulus of elasticity of the material 
h3 

I= s is the moment of inertia of the skin per unit 
length of meridian 

Fe is the hoop force per unit. length of meridian 
p is the radius of curvature of the elastica 

at the point 
3 is the angle that the tangent to the elastica 

makes with the e-axis 
S’ is the distance from the origin to the point, 

measured along the elastica 
4 is the abscissa of the point in the deformed state 

&' is the abscissa of the mid-point in the deformed 
state 

Differentiating Equation (68) with respect to s' we obtain 

(69) 

where 
P2 Fe 

=EI 

Multiplying both sides of Equation (69) by m ds'and integrating 
we obtain 

+ ( $$)2 = p2 (sin$Q - sing) 

or 

&'= ' dlL 
BE- sinqQ - sin@ 

(70) 

Where tan qR is the slope at the end of the cantilever. Integra- 

tion of Equation (70) yields 

a 
1 5 

/ \/ 
dq 

= pJT-- 0 sin-# a - sin* 
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(72) 

where 21 is the distance between pleat folds. 

Let 

1 + sin$jQ = 2k2 

1 + sin+ = 2k2sin2 8 

By Equation (72) Equation (71) yields 

$4 = ( f& = F(k, $1 - F(k,QO) (73) 

where F( ) is the elliptic integral of the first kind and 

e. = sin -1 1 - 
kTj-2 

Multiplying both sides of equation (70) by sin ,$ we obtain 

ds' 1 sin@=dq= - sin$ d$ 
P-j/T sin .P & - s in I!/ 

Integration of Equation (74) yields for the end deflection: 

Finally 

E = F(k, 9 - F(k,QO) - 2 [EC& 5) - E(k,@o)] 3 (75) 

where E( > is the elliptic integral of the second kind. 

By Equation (73) Equation (75) can be written 

(74) 

r 

' = ' - 2 

E(k, $1 - E(WO) 

F(k , 5) 
(76) 

- F(kQO) 
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From Equations (68) and (70) we obtain, at 4=0, q/=0 

a' 
a= 

7j=q _ v2(2k2 - 1) 
PJ - F(k,$) 

(77) 
- F(Wo) 

Equations (73), (76) and (77) give @a = 
Jr- 

FQ82 
- , s/a and ,~?'/a EI 

as functions of the parameter 
b/j for various values of k 
pressed, approximately, as 

6 
EI 'i 

F8 = 1. 
0.12A2 1 - ($)2 

Taking into account that 

k. By plotting FGj2/EI against 
it was found that Fe can be ex- 

01 $- (0.9 

(78) 

0.9 <$ cl.0 

where 

x,x 1 are the radii of the parallel circle of the 
balloon during inflation and in the final 
sphere respectively 

nl is the number of meridian pleats 

Equation (78) can be written 

X 

nl 2 EI x 
Fe = (ax,) 0,12 

1 

1 

O< - x (0.9 
x1 

(79) 

0.95 s- 41.0 
x1 
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A sample calculation is carried out below for PAGEOS with the 
following data. 

E = 6.6 x lo5 lb in.'2 = 6.6 x lo5 x 6.8947 x lo4 = 4.55 x lOlo dy cms2 

h= 
S 

0.5 mils = 0.5 x 1O-3 x 2.54 = 1.27 x 10s3 cm 

h3 
I =+ = 1.7 X 10-l' cm4 

For the 80 degree parallel 

x1 = R1 cos 80 

nl = 418 
x1 a= 7r T;I = I 

I 

Assuming 95 percent 
using the second of 

deg = 7 x 30.48 x 1736 = 264.6 cm 

1.99 cm 

inflation, i.e. X/Xl = 0.95 we have, 
Equations (79) 

FQ 4.55 x 1o1O x 1.7 x lo-lo 0.95 = 
0.12 x 1.9g2 

2 = 155 dy cm -1 
l-0.95 

= 155 x 5.71 x 1o-6 = 8.85 x 1O-4 lb in. -1 

and the corresponding hoop stresses will be 

Fe 8.85 x 1O-4 = 1.77 lb in. -2 
"0 = Fq = o 5 x lo-3 . 

It can be seen that to assume FS = 0 will not affect appre- 
ciably the results. 

The above derivation has been based on the assumption that 
the axial deformations of the cantilever are identically zero. 
It is evident that this assumption cannot hold for very large 
deformations (6/a very close to unity) as F@ becomes infinite 
for 6/B = 1. 
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SKIN STRESSES 

Deployment Stage 

During the deployment stage, the height of the accordion 
folds increases by partial opening of the meridian pleats while 
the length of the parallel and meridian circles remain constant. 

‘;: 

IA I 
t 

L 
izzi 

Section A-A 

Considering a section A-A through an accordion fold we 
have for the membrane stresses the expression 

a1 = H 
-%i- (80) 

S 

where P is the internal pressure and hs the skin thickness. 
The height II of an accordion fold can be taken approximately as 

H=Rb= $& (81) 
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where 

Rb is the outside radius of the bend 
2L is the total length of the deployed balloon 

at time t 
N is the number of accordion folds. 

The foregoing derivation was based on the assumption that 
the accordion folds remained in contact, i.e. 

'rrRb 7JL a >T = jq- 

where a is the length of the fold. 

Assuming all the folds to be of the same length 

k? Dl =irj- 

(82) 

ing Equation (83) where Dl is the sphere diameter. Substitut 
into (82) we obtain 

2L -C D1 

Hence, Equation (80) becomes 

(84) 

(83) 

? = %$ (2L < D1) (80’) 

Consider now a section of the deploying balloon by a plane 
parallel to the direction of the accordion folds. The hoop 
stresses will be given by 

O2 = 
p.Zxdy 

2hs dzl 

where 

2x is the diameter of the deploying balloon 
at the point 

dY is the distance between two adjacent 
parallel circles 

dTl is the meridian distance between the 
parallel circles in the full sphere. 
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By Equations (Z), (3) and (6), Equation (85) yields 

(86) 

Finally, the membrane stresses developed in a section normal to 
the direction of deployment will be 

c3= %g = & (87) 

which, by Equations (2), (4) and (6) can be written 

The computer program prints the values of the hoop stresses o2 
given by Equation (86) at the Equator (T = 0). 

Inflation Stage 

The hoop stresses during the inflation stage are given by 

Fe 
53 = T (89) 

where FG is given by Equation (79). As shown in the sample 
calculation of Section III, the values of g8 will, during 

most of the inflation process, be very small, 

The meridian stresses are given by: 

(90) 

The computer program developed in Appendix B gives the values 
of the meridian stresses for a series of selected points along 
the meridian at various stages of inflation. 
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Stresses at the End of Deployment 

.At the end of the deployment stage, the coordinates and 
velocities of the points in the skin satisfy the relations 

7r x = a cos - YL = a (-0s - y1 
2 Ll R1 

. 
i1= L1 y1 l 

2L sin + 7 = L1 sin R1 

The elastic force acting on a cross section a distance yl from 
the equator will be 

-F(Y$ -+ = - 
au1 

E 2rx1hs ay1 
y1 au1 - = - 27r EhsRl cos Ti;l 

1% 

where E is the modulus of elasticity of the skin and UL = U1 
(yl,t) is the displacement from the equilibrium configuration 
X= aces YlIRL' Y1- The net force exacted on an element of 
length dyl will be: 

2;lrEh R -&- cos - - Yl au1 
s 1 ay RI aY (11' > 

By Equation (lo), (11') and (12), the differential equation of 
motion becomes: 

- --L-E- cos y1 
2 R1 

- dYl 
Rl 

W,(Yl, t> = 
ay1 

dyl+2:I;pl a2 yl . yl dyl o (13') R cos - sin - 
1 Rl Rl 

Where pl is the internal pressure at the end of deployment. 
Assuming lJl(yl, t) to be of the form: 

ul(Ypt) 
y1 = B,(t) sin - 
Rl 

Equation (13') becomes after simplification 

&(t) + 4:~,~l(t) = L!i$ pl 
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whose solution is 

Tqt) = &p,+A cosv- M t+ B sin 
S 

The constants A and B are determined from the initial con- 
ditions 

U1(yl,t=O) = 0 

. y1 ul(yl,t=O) = gl = il sin -q 

yielding 

p1a2 
A=- oh 

S 

Finally 

The longitudinal stresses are given by: 

The maximum value will occur at the equator (yl = 0): 
4./r Eh 
2 t) + M 
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Stresses at the end of the inflation. - At the end of the 
inflation stage, the points in the balloon surface have reached 
the spherical surface with a certain velocity. The stress analy- 
sis of the skin can now be carried on the assumption of small 
deflections and linear elasticity. The displacement components 
satisfy the differential equations: 

m R (91) 
2(1+4 + -+ w= 0 

where 

U,W are the displacement components in the 
meridian and radial direction respectively. 

EhS DE--- 
l-V2 

is the membrane rigidity of the skin. 

V is Poisson's ratio for the skin material. 

Rl’b are the radius of the sphere and collatitude 
angle respectively. 

P is the pressure inside the balloon at the end 
of inflation. 

m= s- 
S 

is the mass per unit area of the skin. 
1 

The solution of Equation (91) is 

U = s ini+ t 

1-V PRf 
w = - Ehs + 2 

c WnPn(4> sinujnt 

(92) 

where Pn( ) is the Legendre polynomial of the first kind of 
order n and the prima denotes differentiation with respect to 

4. Substituting u and w into Equation (91) we obtain: 
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I !a2 n - n(n+l) + l-v Un + (1fv)W n = 0 1 
n(n+l)(l+v) U, + Gi - 2(l+v)]Wn = 0 l 

where 

The requirement that Etjuation (93) have nontrivial solutions, 
leads to the frequency equation: 

[n(n+l) + 1-3vJGz + (1-v')(n-l)(n+Z) = 0 (95) 

The solution of Equation (95) is 

n2 = (n-1P+2) n ~+&[1+2~ 

1 

+ ( 3 (n-:);n;2)) 
2 T 1 I (96) 

Differentiating Equation (92) with respect to time, we obtain 
the velocity components 

. 
u C&t) = c unuJnP;($?S) cosujt 

c 
(97) 

G(d,t) = Wn"nPn($d) co%~Jt 

The symmetry of the problem with respect to the equatorial plane 
requires that n be even, Considering only the first two modes 
we have: 

u Cd, t> 
w(d, t) 

3 z-v 
2 

- 1-v 
2 

U2 sin 26 sinuJ2t 
PR,2 w2 - + w. sintoot + t 
EhS 

(98) 
(3cos 2d + 1) sinw2t 
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&,t) = - -$-- U2ti2 sin 28 cosw2t 

w2ti2 (99) 
Wd, t> =wouJo c'oscoot + 7 (3 coszb + 1) coscu2t 

The stresses are given by: 

3 

(100) 

PR; 
a' = 2hs + (1-v') Rl 

(l+v) Wosin COot 

+ + W2 (3cos28+1) - 3u2 (cos 2!i4 + vcos2$)] sinm2t] 

E 
+ (1q2) R, 

(l+v) WosinCJ,t -I- L 
~~W2(3cos2$+1) 

L 

I 1 
(101) 

-3u2 (cos26 + vcos2d) sincu2t 

PRI 
‘%=q+ 

E 

(1-v 
2 ) R1 

(l+v) Wosinuot + 9 2(3~~~2~+1) 

-3u2 (cos2d + VCOSZ~) 
I I 

sincu2t 

By equating to zero the derivative of the stress with respect 

to d we find that their maximum (or minimum) will occur at 
the pole (d = 0) or the equator (d = 7~/2). At the pole we have 

pR1 
9 = % = '7 + '&Rl WoSinaot + (w2-3u2) Sinu2t 

3 
(102) 
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while at the equator 

pR1 
*’ = q + (1-v’) WV) R wosinuot - ( 1+v 

2 w2-3"2) 
1 

sinco2t 
3 

$- + %J= s (l-V;) Rl[(l+v) wosinuot - (9 w2 - 3~IJzt~~) 

sinm t 2 1 
The absolute maximum of the stresses will then be: at the pole 

PRl 
'6 ="e = q + (1-v: Rl 1 woI + I 9 - 3u I] 2 (104) 

At the equator 

PRl 
ad = 2hs + & Rl [cl+') 1 wO 1 + 1 + w2 - 3u4 

(105) 

(lj) R 
1 

['lfy) 1 w. 1 + 19 w2 - 3Vu2)] 

The coefficients Wo, U2,W2 are determined by evaluating the 
total momentum in the horizontal direction and the total kinetic 
energy of the balloon at the end of inflation. Thus: 

_n 

c"k'k =I msR1" sina (ucos d + wsin 4) dd 
0 

n 
+ 1 Mk(x; + 9;) = -+- msRfsind (u2 + I$') db 

0 
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From which we obtain 

c 

M 
Mk*k=--B wocuo - 1 

WL+6U2 
Tw2 3 

c 
2 .2 

Mk(j$ + yk) = I 

The coefficients U2 andW2 are related by Equation (93): 

u2 = 
Z(li-v) - fi; 

6(l+v) 

(107) 

(108) 

37 



VOLUME OF THE BALLOON DURING DEPLOYMENT 

Referring to Figure 6, the volume of the kth fold will be 
given by: 

aH 2 !F 
vk = + 

I[ 
'2k-1 '2k 

- cos - + 2 cos 1 + Hk""l 
Rl Rl 

1 dal 
0 7T 

S2k+l-(s2k-1+ 2 Hk) aH ok 'Zk+l + ' 
+-2 i t 

cos 
Rl 

0 

+ cos 'Zk-1 ;,+ Hk + ' ]dc + 

0 

"oHk 
ir 

cos 'Zk+l + 2 cos '2k-U - Hka2 
+ 6 Rl Rl 

I 
da 

2 

aoHkRl 
; 

7 Hk 'k = 
3 -?- RL cos 

-+ 5 sin- 
Rl 

+ sin 
jk + -+- Hk 

Rl I cos -2 
Rl 

where 

24k = '2k+l - '2k-1 is the length of the kth fold. 

'2k+1 - 'Zk-1 
'k = -is the distance along the surface 

of the balloon, from the center of 
the kth fold to the equator. 

In practice, the length 2ak and the height Hk of the accordion 
folds will be small as compared to Rl the sphere radius. Hence 
we have: 

'k 
'k -2aoHkek cos - 
Rl 

and the total volume will be 

F 'k 
v = 2ao[Holo -t- 2 x Hkjk COS - 

Rl I 
1 

(109) 
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Equatorial 
Plane 

Figure 5 Figure 5 Side View of Balloon During Deployment (Schematic) Side View of Balloon During Deployment (Schematic) 

wo 
Figure 6 Side View of an Accordion Fold (Schematic) 
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Where 'N is the number of accordion folds. Assuming all the 
folds to be equal, i.e., 

HO 
= Hl = . . . = H = + 

a = ?T Rl 
0 

jl= . . . =a = 2N 

then 
'rrRl 

'k = Zk(! = k N 
N 

2 
(110) 

=2aoH& 1 + 2 [ c 
7T 

v cos k N I 
4aoRlL 

k=l 
=2aoHL cot &-d N 

The effective width a0 of the equatorial cross section is 
given by (Figure 7): 

a 
0 

= al + al - [ II a; - (~&, 2 I 

where n is the number of pleat folds. For large n, we have 
approximately 

2n Rl 
a = 

0 
al = - n 

Finally: 
8~ R; L 

'= nN = 71a2L (111) 

The radius a of the equivalent circular cross section at the 
equator is then: 

a= II- 8, nN 1 
At the beginning of the inflation process, the length 2Lo of the 
accordion folded balloon is equal to the polar inside diameter 
of the canister, 

4rK& 

DC and the initial volume V. is 

'0 = nN 

40 



ms- 
I 
I 

l-I0 

$1 

I 

aa- 

I 

Figure 7 Cross Section of the Equatorial 
Fold (Schematic) 
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MODELING LAWS 

Deployment Stage 

This stage is governed by the differential Equation (26): 

! 

LO F(L)(l - T;-) + 2a2 13 (113) 

where F(L) is given by Equation (25). 

For a geometrical similar model we have 

where L , E are corresponding dimensions in the full-scale 
balloonPandmmodel and h is the scale factor. The model will 
satisfy the differential equation 

d2L 

s=$ 

L 

m 
Fm(Lm>(l - $% + Pam2 

L 
Plm + pom J? (114) 

m m m 

where Plm is the outside pressure acting on the model (test 
tank pressure). 

Let 

Mn, =w 

tm = 'rt 

i.e., I;, T, are the mass and time scale factors. Equation (114) 
can be written 

h d2L h- 
Frn(=) (1 

LO 

JTs=rlM -+ + 2 h2a P,, - elm + P,, + (11.5) 

or 

P,, - plrn + P,,, + 13 (116) 
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Comparing Equation (116)with Equation (113)we obtain the 
following modeling conditions 

AT2 a) - = 1 
IJ- 

b) Fm(AL) = h2F(L) 

c> PC,'P lm = 'c 

d) PO, = PO 

Hence 

a> The time scale factor 'c will be 

-r = d- 
I' 
A 

b) The elasticity of the accordion folds must have the same 
functional form in model and full-scale balloon, and its scale 
factor must be equal to the square of the linear scale factor. 
Both conditions are satisfied if the model is folded in the same 
way as the balloon and the bearing force is proportional to the 
square of a characteristic length. As shown in Section III, 'the 
force F(L) can be expressed approximately as 

3 
fL 

Ll 
F(L) = & N2 nEBlhi .~z 

Then, condition (b) will be satisfied if 

If the model is made of the same material as the balloon, this 
implies that the thickness must be scaled also as the linear 
dimensions. 



cl The pressure due to the subliming chemicals in the 
model must be equal to the pressure due to the subliming chem- 
icals in the full-scale balloon plus the test tank pressure, 
This implies that, either we must use for the model test a chem- 
ical with a higher subliming pressure or carry the test at a 
higher temperature or both. 

d) The residual gas pressure must be the same in model and 
and full-scale balloon. 

Inflation SCage 

The behavior of the balloon during this stage is governed 
by the differential Equations (39) and (40) 

-. 1 x = - 
iii 

px sin 6 - Fe + $g Fd x ~0s b 
3 

. . 1 
Y = - 

iii C 
px cos $6 - & F$xsind 

3 

(117) 

where 

m = ml Rl sin g = 

again, if 7, II,, T are the length, mass and time scale factors 
we have for the model 

. . 
X= L 

P, GP, 
a - plm) x sin 4 - Fe + 3~ FB x cos b 

m m 1 
[ . 

(118) 
A (Pm - Plm) x cos d - & Ftirn x sin d 1 

comparing Equations (117) and (118) we obtain 

2 
a> x= 1 c> P 

Fdm = hFB 

b) Fgm = hF@ d) P m - Plm = P 
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Hence 

a> The time scale factor is given by 

b) The hoop force Fe must be scaled as the linear dimen- 
sions. This condition will be satisfied if the hoop force is 
proportional to the parallel radius as for a linearly elastic 
body. In general, it will not be possible to satisfy this con- 
dition exactly (the thickness of the shell can not be scaled as 
the other dimensions). However, since this force will usually be 
small as compared with the others, its failure to satisfy ex- 
actly the scaling conditions will not seriously affect the re- 
sults of the scale test. 

c) The meridian force FQ must scale as the linear dimen- 
sions. Solving the second of Equations (117) for Fd we have 

2n F& x sin q5 = in p x 2 
- M(s) yG 

where N(s) is the total mass of the shell above the point under 
consideration and yG the ordinate of its centroid. For the 

model we have then: 

271. IF 
d 

x sin B = 71 A 
m 

2[~m - pIm)x2 - F M(s) j;, 

Finally, on account of (a) and (d) 

d) The internal pressure in the model must be equal to the 
internal pressure in the full-scale balloon plus the pressure in 
the test tank, at all times, that is 

"lm "1 
P cm - Plm + Porn r = PC + PO v 

m 
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where 

v1 is the volume at the beginning of the inflation 
stage (end 'of deployment) 

V is' the present volume during inflation 

PC 
is the pressure due to sublimation of the 
chemicals 

PO 
is the pressure due to the residual gases at 
the beginning of the inflation stage (end of 
deployment). 

The volume in model and full-scale balloon are related by: 

v = ?.s3 v m 

.Hence, condition (d) requires 

P cm = Pc+Plm 

P = 
om PO 

That is, the pressure due to the subliming chemicals in the 
model must be equal to the pressure due to the subliming com- 
pounds 'in the full-scale balloon plus the pressure in the test 
tank and the residual gas pressure must be the same for balloon 
and model. 

In 
heat is 
sary to 
most of 
implies 

Note on the Scaling Laws 

Appendix A it is shown, that during the deployment stage, 
accum-Jlated in the satellite'at a rate larger than neces- 
maintain a constant sublimation pressure while, during 
the inflation stage, the situation is reversed. This 
that, during deployment the pressure will follow the lad: 

v 
P = PC + PO $ 

with 

PC 
= pressure due to sublimation of the chemicals 

at launch temperature 

PO 
= pressure due to residual gases at launch 

Vo,V = initial and present volume of the balloon 
during deployment 

(121) 
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while, during inflation, the pressure will be approximately 

v1 
P = i+- 

where 

vO p= p, +p;-= 
v1 

v1 
= 

V = 

(122) 

total internal pressure at the end 
of the deployment stage (beginning 
of the inflation stage) 
volume of the balloon at the end of 
the deployment stage (beginning of 
the inflation stage) 
present volume of the balloon during 
inflation 

The scaling laws require that, for both stages 

P cm = 4m+ pc 
(123) 

P = 
om PO 

By Equation (l-21) and (122), Equation (123) becomes 

P cm = Ym+ pc 
(124) 

P = 
om PO 

for the deployment stage and 

P cm =9m 
V (125) 

P om =i;=p,+p, $ 
1 

for the inflation stage. 

Hence, for correct modeling, it will be necessary to pro- 

vide some source of heat so that the sublimation pressure p,, 
in the model be maintained at the adequate constant value dur- 
ing each stage. Failure to satisfy this condition will not 
affect seriously the results at the beginning of the process 
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as, in general, pc + Plm will be small as compared to 

“0 

PO v 

but, near the end of inflation, the pressure due to the residual 
gases has dropped to only a small fraction of its original value 
and hence Plm will not be negligible as compared to 

“0 

PO v - 
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APPENDIX A 
TEMPERATURE AND SUBLIMATION RATES 

1. Temperature of the Satellite. - The temperature of the 
balloon satisfies the differential equation 

dT + h 
M cp dt 

dqe dw _ dqa --- 
s dt dt dt 

where 

(126) 

M = MS + MC is the total mass of the balloon 
(including the chemicals) (g,) 

C 
P 

is the specific heat of the whole 
balloon 

I 
including the chemicals) 

(erg gr- "K-l) 

i-z 
is the rate of change of the absolute 
temperature of the balloon (“K set-1) 

As 
is the latent heat of sublimation of 
the chemicals (erg gr-1) 

5% 
is the rate at which the chemicals are 
sublimated (gr set -9 

dqa 
Z-E- 

is the rate at whichlthe balloon ab- 
sorbs heat (erg set ) 

dqe is the rate at which the balloon emits 
dt heat (erg set") 

The rate at which the balloon absorbs heat from all sources 
(direct sun radiation, direct Earth radiation and reflected 
Earth radiation) is given by' 

dqa 1-aE oE 
- = dt IL + 2aE(1 - + 2a 

E 
F CsasS' 1 (127) 

S 

where 

aE is the Earth albedo (aE = 0.36 approximately) 

k RO =- 
Ro+Hs 

RO 
is the Earth radius (R. = 6.317 x lo8 cm approximately) 

Clemmons, D. L., Jr., The ECHO I Inflation System, NASA TN D-2194. 
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FR(8) 

aE 

aS 

cS 

S' 

The rate at which the balloon emits heat is given by 

dqe 
dt= 

where 

is the altitude of the satellite orbit (cm) 

is the angle between the radius vector of 
the satellite and that of the Sun from the 
Earth center 

is the relative Earth reflected energy 
incident on the satellite which can be 
taken approximately as 
FB(G) = cos 'is (OF 8% $) 

is the absorptance of the satellite skin to 
Earth radiation 
is the absorptance of the satellite skin to 
solar radiation 
is the solar 
x 106 erg cm' 5 

adiat'on constant (Cs = 1.3953 
set -4 

is the area of the meridian cross section of 
the satellite 

& o u ST4 

E 
0 

is the total emittance coefficient of the 
satellite skin 

c' is the Stephan-Boltzman constant 
(2 = 5.71 x 10 -5 erg cm -2 set -1 "K-4) 

S is the surface area of the satellite 
T is the absolute temperature of the satellite 

By (127) and (128) Equation (126) can be written 

M Cp g + A, 2 = ~~ u S(T14 - T4) 

where 

(128) 

(129) 

--- 
4 

T1 = + 2aE(1- v 
l-aE aE Csas so 

1-k )(FR(P) + 2a 5 -gyy s (130) 
E I 0 
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If in Equation (129) we set h, = 0, i.e. there are no chemical 
substances to be sublimated or, in other words, all the heat 
accumulated in the balloon is used to raise the temperature so 
the skin will heat up at the highest possible rate, we obtain 

dT 4 4 MCP E = sOcs (T1 - T ) (131) 

The sample calculations below have been carried out for the 
9c 

PAGEOS satellite with the following data. 

Data 

Sphere radius 
Skin thickness 
Skin density 
Skin mass 
Modulus of Elasticity 

Number of pleat folds 
Initial equatorial radius 
Initial length 
Deployment length 
Altitude of orbit 
Solar absorptance 
Earth absorptance 
Thermal emittance 
Launch temperature 
Specific heat 

Then 

k 6.371 
= 6.371 + 1.523 = Om808 

R1 = 50 ft = 1.524 cm 
hs = 5 x 10m4 in. = 1.27 x 10m3 cm 

-3 
1J.S 

= 1.38 gr cm 

MS 
2 = 471.R1 hs+ = 5.115 x lo4 gr 

E = 6.6 x LO5 lb in.-2 
= 4.55 x lOlo dy cmB2 

nl = 418 
a = 22.Rl/nl = 22.91 cm 
2Lo= 'rra = 71.97 cm 
2L1= 7rRl = 4.788 x lo3 cm 

HS 
= 822 n-m. = 1.523 x lo8 cm 

CL = 0.10 
S 

"E = 0.03 

EO 
= 0.03 

TO 
= 75°F = 297°K 

cP 
= 1.3 x lo7 erg gr -1 .K-1 

1 - &z= 0.411 

"See note page 59 
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Taking the maximum value for FE(B), FE(E) = 1, i.e., 
assuming that the satellite is on the Earth-Sun line, we have 

Tl 
4 = 

[ 
1 + 2x.36x.411 (1 + w KG) . 3 

1.3953x106x.10 s' 
0.03x5.71x10-5 s 

= 1.o99x1o11 g 

E e 
&= o.o3x5.71x1o-5 ,- = 2.576x10-l8 

P 5.115x104x1.3x10 

a> Beginning of 

S =4aL 
0 

8aL 
s' = ~ O 

deployment 

[fi+ log.(l+fi)] = 7.694x103 cm2 

= 2.136~10~ cm2 

Tl 4 = 1.099x10 11 2 136 x -* = 3.o51x1o1o . 

To4 = 2974 = 7.781~10' 

is = 2.576x10-l8 3.051~10~~ - 7.781~10' 7.69x103 

= 4.505~10~~ "K/set 
I 

b) End of deployment (beginning of inflation) 

= 
L 2 

4 a Ll J-7-F l+F + 
1 

8 a Ll 
= 1.425~10~ cm2 7J' 
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Assuming T = To we get 

dT = dt 2.576 x lo-l8 [ 3.499 x 101' - 7.781 x 10' 3 4.474 x lo5 

= 3.137 x 10s20K/sec 

c> at the end of inflation 

S = 4aR12 = 2.919 x lo7 cm2 

S' = rRl 2 = 7.297 x lo6 cm2 

Tl 
4 = 1.099 x 10 11 0.7297 = 2 747 x 1010 

?2-3TT * 

assuming again T = To we get 

dT 
YE = 2.576 x lo-l8 2.747 x lOlo - 7.781 x 10' 

I 
2.919 x 107 

= 1.480"K/sec 

As the present temperature T is larger than To, the tempera- 
ture when the canister opens, the actual rates of change of 
temperature will be smaller than the above computed values. 
Moreover, in the above calculation we did not consider the sub- 
liming chemicals which will increase the mass M and the spe- 
cific heat C 

P 
and consequently reduce the rate of change of 

temperature with time. Moreover, the sublimation of the chem- 
ical powder will require a certain amount of heat which will 
further reduce the value of dT/dt. 

2. Rate of Subl-imation of the Chemical Compounds. - If in 
Equation (129) we set dT/dt = 0, we obtain 

AS 
dw dt = ~~ u S (Tl 4 - T4) (132) 

i.e., all the heat accumulated in the satellite is used to sub- 
limate the chemicals or, in other words, the chemicals will be 
sublimated at the highest possible rate. 
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Let pc,V be the pressure due to the sublimated chemicals 
and the volume of the balloon at time t. Then, assuming per- 
fect gas, 

R 
pcv = I;ig Tw (133) 

0 

where 

Rg 
is the universal gas constant (8.3149 x lo7 erg-MO1 -l.OK-l) 

MO 
is the molecular weight of the compound (gr*Mol-') 

Assuming constant temperature, we have that, in order to keep 
a constant pressure, the rate of change of volume must be 

R T sob 
MoAspc (Tl 

4 - T4)S (134) 

If the actual rate of change of volume is larger than the above 
value, there will be a drop in the sublimation pressure. 

The sample calculations below have been carried out for 
the PAGEOS satellite using benzoic acid as the subliming com- 
pound and the following data. 

Temperature T = 300°K 

Molecular weight 
MO 

= 122.12 gr Mel-'(from Table 1) 

Latent heat of sublimation A, = 5.60 x 10' erg gr -l(f rom Table 1) 

Sublimation pressure PC = e 29*595 - $f$ = 8 89 dy cm-2 . 

The other data are the same as in Section 1 of this Appendix. 
Hence 

R TEOo lo7 x 300 x .03 x 5.71 x lO-5 = 8.3149 x 
Mo b PC 122.12 x 5.60 x 10' x 8.89 

= 7.028 x lo-' cm set -loK-4 

T4 = 8 1 x lOgoK . 
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TABLE I 

PHYSICAL PROPERTIES OF SOME ORGANIC COMPOUNDS 

Molecular loglOp(torr) log,p (dy cmm2> Latent heat of 
Weight Sublimation 

Compound Formula gr/Mol = a - $ =A-$ Kcal/Mol lO'erg/gr 
I 

1. Acetamide C2 H5 N 0 59.07 9.09 3066 28.134 7060 14.0 9.94 

2. Benzoic '7 H6 '2 122.12 9.73 3571 29.595 8223 16.3 5.60 

kJY 
Acid 

3. Naphtalene C10H8 128.16 10.75 3616 31.949 8326 16.5 5.40 

4. d-Camphor '10H16' 152.23 8.41 2645 26.571 6090 12.1 3.33 

5. Anthra- C14H8 '2 208.20 14.31 6604 40.146 15206 30.2 6.07 
quinone 

6. Anthracene C14H10 178.22 11.15 5401 32.870 12436 24.7 5.80 

a b A B 



a> Beginning of deployment 

S = 7.694 x lo3 cm2 

S' = 2.136 x lo3 cm2 

T14 = 3.051 x lOlooK 

g= 7.028 x lo-' 3.051 x lOlo - 8.1 x 10' 3 7.694 x lo3 
-1 = 1.212 x lo6 

while the rate of change of volume due to inflation is 

dV dt = 0 

b) End of deployment 

S = 4.474 x LO5 cm2 

S' = 1.425 x lo5 cm2 

T1 
4 = 3.499 x 1o1O 

dvil’ 
dt = 7.028 x 10" 3.499 x lO1' 

L 
- 8.1 x 10' 1 x 4.474 x lo5 

= 8.455 x lo7 cm3/sec 

while the actual rate of change of volume is 

dV 
dt = 7.731 x lo6 cm3/sec. 

cl Beginning of inflation. The shape and size of the 
balloon are the same as for the end of deployment, hence 

dv’k 
dt = 8.455 x lo7 cm3/sec 

while the actual rate of change of volume is 

!p 4.729 x lo6 cm3/sec 
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d) At 5 percent inflation (Equatorial diameter = 0.05 x 
Final diameter). 

S' = 0.050 x 1.566 x 7.297 x lo6 = 5.714 x lo5 cm2 

S = as' = 7r x 5.714 x lo5 = 1.795 x lo6 cm2 

Tl 
4 = 1.099 x 1011 x w = 3.498 x 10100K4 . 

dV* _ 
dt 7.028 x 10" II 3.498 x lOlo - 8.1 x 10' 1.795 x lo6 I 

= 3.391 x lo8 cm3/sec 

while the actual rate of change of volume is 

g= 3.426 x lo8 cm3/sec 

4 At the end of inflation 

S' = TR l2 = 7.297 x lo6 cm2 

S = 4rR12 = 2.919 x lo7 cm2 

Tl 
4 = 1.099 x 10 l1 ;*;f;' = 2.747 x l()100K4 

. 

$ = 7.028 x 10" C 2.747 x lOlo - 8.1 x 10' 1 2.919 x lo7 

= 3.974 x 10' cm3/sec 

while the actual rate of change of volume is 

dV 
dt = 2.074 x lOlo cm3/sec 

dV The values of a~ above have been calculated on the assump- 
tion that the pressure due to the sublimation of the chemicals 
remained constant during the whole process. 

It can be seen, that during the deployment stage, the rate 
at which heat is accumulated in the satellite is larger than 
what is required to maintain the sublimation gas pressure. On 
the other hand, the rate of change of temperature during this 
stage is certainly less than the calculated values for the skin 
alone which were at most a few hundredths of a degree per second. 
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It seems reasonable then to assume, that during the few seconds 
it takes the balloon to reach full deployment, the pressure due 
to the sublimation of the chemicals remains constant and the one 
due to the residual gases varies according to Boyle's law. 

During most of the inflation stage the rate of heat accumu- 

lation is smaller than the amount required to just keep the sub- 
limation pressure constant. To calculate the actual pressure in- 
side the balloon, we determine the rate of sublimation of the 
chemical from Equation (132) 

dw - E oas 
-- 
dt 

As 
U14 - T4) (110') 

Assuming that the rate of of sublimation remains constant dur- 
ing a short time interval At, the amount of gases generated 
during said time interval will be: 

EoOS 
Aw = h (T14- T4)At 

S (135) 

Let P,Y Vn' be the pressure and volume of the balloon at time tn. 
At time tn+l = tn + At the partial pressure due to the gases 
already in the balloonat t = tn will be 

(136a) 

While the gases generated during the time interval At will give 
a partial pressure (Equation (133): 

(136b) 

Hence the total pressure at t = tn+l will be: 

Tl 
4 4 

pn+l V 
- T At 

n+l 

(137) 
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Note. - After this Appendix was submitted, we received 
information that the actual altitude of the PAGEOS orbit will be 
4250 Km and the actual temperature close to 140°F instead of 
1523 Km and 75'F as used in the calculations. The higher aiti- 
tude will have the effect of reducing the amount of heat received 
from the earth and hence will reduce the value of Tl, while the 
higher temperature will increase the value of T and p,. Hence, 
the rate of change of temperature dT/dt and the rate of subli- 
mation of the chemicals dw/dt, hence dV*/dt, will be smaller 
while the actual rate of change of volume dV/dt will be larger 
than the calculated values. Consequently, the assumption that 
the temperature remains constant will be even more valid. 
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APPENDIX B 
COMPUTER. PROGRAMS AND NUMERICAL EXAMPLES 

Computer Program for the First Stage Deployment Time 

1. Purpose.- The purpose of this program is to calculate 
the time for the first stage deployment by evaluation of the fol- 
lowing integral (Equation (20)). 

h=L h=L 

(138) 

A . . . dummy variable for L 
a=h 

(i) = GI(?\) + CI()\) Jp, where CI(?\) = LL CII(a) da (139) 

0 

GI(h) . . . explicit function of h (i.e. the part of (L) 
which can be integrated explicitly from'i) 

CI(?\) . . . integral function of h 

CII(a)... the part of 'L that cannot be integrated 
explicitly 

The particular form of (L) used in this study, given by 
Equation (28) is an explicit function of h hence, CI(A) s 0. 

If at some future time a different formulation for (L) is 
developed which cannot be entirely expressed as an explicit func- 
tion of h, (i.e. CI(?\) # 0) the program has the option to handle 
this case readily. 

2. Input_.- The input consists of: -- 

Balloon parameters: 

(a) Modulus of elasticity of the balloon skin. (E) 

(b) Thickness of the skin. (HS) 
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(c) Inside diameter of the canister. (DC) 

(d) Total weight of the balloon including 
the chemicals. (W) 

(e) Diameter of the fully inflated balloon. 
(Dl) 

(f) Number of accordion folds. (NAF) 

(g) Number of meridian pleat folds. (NPF) 

Pressure parameters: 

(a) Pressure of the residual gases inside the 
balloon at the beginning of the deployment 
stage. (POR) This value can usually be set 
equal to the residual gas pressure in the 
canister. 

(b) Sublimation pressure of any chemicals 
present inside the balloon. (PCC) In 
view of the discussion in Appendix A, 
this value is assumed to remain constant 
during the entire deployment stage. 

Output controls: 

(a) Number of intermediate time print-outs for 
one case (including the final time print- 
out for the first stage). (JJ) 

(b) A set of percent deployment values corres- 
ponding to each value of 35 in 3(a) above. 
(CL) 
For example, if four intermediate time 
print-outs of the first stage are desired, 
JJ=4, CL=O.125, 0.25, 0.5, 1.0. Note: the 
decimal equivalent of the percent is read 
in as input (e.g. 50 percent is read in as 
0.5). The range of input values should not 
exceed the following inequalities; 

2 
-rr * (1 + GAM)< CL ,i 1, 

where the lower value corresponds to the 
beginning of deployment just beyond the 
singularity.;k 

;k See following section (Integration Controls) for description 
of this singularity. 
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Integration controls: 

The following four control variables (GAM, N, IS, 
NIM) are for controlling the integration loops of the first 
stage. Suggested values for the control values are: 

GAM = 0.01 
N = 30 

IS = 0 (If CI(X) = 0, IS must be zero) 
NIM = 30 

Each of these four variables is described below. 

The integral, Equation (135), evaluated by this 
program has a singularity of the first kind at L = Lo. 
In the neighborhood of the singularity (i.e. from Lo 
to Lo + E) it 1 las been evaluated analytically, hence 
the integration routine begins after the singularity 

( i.e. at L = Lo + E). The computer variable GAM is 
related to E by the relation E = GAM.L 

0’ 

The outer integration index N is related to 
the total number of integration intervals by the 
following relation: 6*N.JJ = total number of inte- 
gration intervals for one case. 

The inner integration switch is directly related 
to CI(h). The meaning of the expression CI(h) (given 
by Equation (136) has already been explained. If 
CI(h) = 0, then set IS = 0; if at some future time a 
different expression for L is derived such that 
CI(h) $ 0, then set IS = 1, and rewrite the ACC, CII 
and GI cards in the Fortran deck accordingly. 

The variable NIM relates to the integration in- 
terval of t11e inner integral given by Equation (136). 
The total number of integration intervals in Equa- 
tion (136) (at a = L) is given by 6. [NIM + 2 . If 3 
IS = 0, NIM is not used by the program; if IS # 0 
a suggested value for NIM is 30. 
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SUMMARY OF INPUT CARDS FOR FIRST STAGE 

Text Computer 
Variable Variable Definition and Units of Input Format 

PO 

PC 

E 

DC 

hS 

W 

Dl 
T 

N 

nl 

T 

L/L1 

POR 
PCC 
E 
DC 
HS 
W 

Dl 
TP 

NAF 
NPF 
JJ 
TP 

N 
IS 
NIM 
GAM 

CL 

END OF integer part of (1 + c +)] CARDS 

There are, therefore 3 -t [integer part of (1 + +)] cards of 
required input for operation of the first stage program. 

Residual Gas Pressure (torr) E 10.5 
Sublimation Pressure (torr) E 10.5 
Modulus of Elasticity (psi) E 10.5 
Inside Diameter of Canister (in.) E 10.5 
Skin Thickness (mils) E 10.5 
Total Weight of Balloon (includ- 
ing chemicals)(lbs) E 10.5 
Diameter of Inflated Balloon (ft) E 10.5 

E 10.5 

Number of Accordion Folds 15 
Number of Meridian Pleat Folds I 5 
Number of Time Printouts 15 
Average Temperature of Balloon('F)E 10.5 

END OF CARD 

Outer Integration index 15 
Inner Integration Switch 15 
Inner Integration Index 15 
Singularity Percentage Control E 10.5 

END OF CARD 

Percent Deployment 8 E 10.5 
(8 per card) 
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3. Output.- The first part of the output includes the in- 
put which is then re,adily available for checking and reference 
purposes. The ratio of the spring force of the elastic folds 
to the initial pressure force is printed (FBI) which gives a 

, 
measure of the relative strength of these two acting forces. 
Also the ratio of the initial residual gas pressure to the 
chemical gas pressure (PB) is printed. 

Finally, JJ groups of the following five quantities are 
printed: 

PRESSURE Current internal pressure inside balloon (torr) 
ACC Current acceleration at tip of balloon (ft/sec/sec) 
STRESS Current hoop stress at the equator (Psi) 
VELOCITY Current velocity at tip of balloon (ft/sec) 
TIME Current time in seconds 
LENGTH Current value of L in feet (L is one-half the 

balloon length during deployment). 

4. Cutoff.- The program arrives at a normal exit and calls --- 
for a new problem. At the end of the last problem the program 
stops. 

5. Method.- The integration method used was "Weddle's 
2 

-- 
rule". Briefly the method breaks the integrand into groups of 
six intervals. The typical six interval region is given as: 

x=D + 6h 
F(x) dx = @ f(D) + 5*f(D + h) + f(D + 2-h) + 6.f(D + 3-h) 

x=D 
+ f(D + 4-h) + 5*f(D + 5.h) + f(D + 6-h) 1 

6 
The error over this interval is less than I I && where b6 
is the sixth difference, as compared to say the less accurate 
Simpson's rule where the error is less than 
b4 is the fourth difference. 

2 John Todd, "Survey of Numerical Analysis," Mc-Graw Hill Book 
co., 1962, p. 61. 
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The basic six interval formula is given,however, by combin- 
ing like terms it can be written as a double summation over a 
6-h-N span (where N is any integer 1 2). 

x=D + 6-h-N 

I 

m=N a=7 
F(x) dx = 

x=D 
G mLl egl GjaQrne*f(D + h*[m*6 - ' + Tmi]) 

where 
'5 

: 

GJ =51 
2 

\l 

for n 1 2 

T mk! = 6.~ + 1 m=l,j=7 

= 0 all other m,n 

Q ml? = l/2 m=1,,8=6 

= 0 m = 2,3,...N, R = 7 

= 1 all other m,j 

With reference to Equation (135) 

f(x) corresponds to - 
(2, = $A?7 

D corresponds to Lo + E 

D + 6-h-N corresponds to L 

where E is a small distance from the singularity which exist 
at Lo. 

The value of the integral in the neighborhood of the sin- 
gularity is calculated in the following way: 

dh 

- Q(L,) 
I 

where x=h 
Q(A) - Q(Lo) = i $ [F(x).(y - 2) + 2.a2*p(x)] dx 

LO 

d 

65 



Let 
A =L,+y 

d?, = dy 

Then 
y=E: 

tE = dy 

0 Q(L, + T> - Q(L,j 

Expanding .Q in a Taylor series: 

QG, + Y> = Q(L,) + -i'Q'(L,) + $ Q"(L,) + . . . 

where the primes denote differentiation with respect to the ar- 
gument. Neglecting the second and higher powers of y we obtain: 

where 

Q’ (Lo) = i%$t 
[PO + PC] 

The tC value is added to the time obtained by the numerical 
integration. 
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6. Sanple problem.- The PAGEOS balloon will be used as a -- 
sample problem. 

--.-.- 

- 
Parameter Computer 

Variable Value 

Residual Gas Pressure 
Sublimation Pressure 
Modulus of Elasticity 
Inside Diameter of Canister 
Skin Thickness 
Total Weight of Balloon 
Diameter of Inflated Balloon 
Temperature of Balloon 

POR 
PCC 

E 
DC 
HS 

W 
Dl 
TP 

1.0 torr 
0.01778 torr 
0.66~10~ psi 
26.5 in. 
0.5 mils 
147.5 lb 
100 ft 
100°F 

Number of Accordion Folds NAF 65 
Number of Meridian Pleat Folds NPF 418 
Number of Time Printouts JJ 4 

Outer Integration Index N 30 
Inner Integration Switch IS 0 

;'c Inner Integration Index NIM 30 
Singularity Percentage Control GAM 0.01 

Percent Deployment CL 0.125, 0.25, 0.5, 1.0 

Result: Time for first stage deployment equals 6.9Ssec. 

The printout sheet for this sample calculation can be found on 
the following page. 

;k This value is not used by the program whenever IS = 0, there- 
fore it is immaterial what value is inserted for NIM. 
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Pc)P= n.lCOOnODoE cl pee= ~.L~?RO~CCF-01 F= r:.66flwr~not: 'n6 DC= G.2650onoo~ 02 Hs= OeSOQOnOOnE r10 

w+ !-l.1475?O@C~ 03 01= 0,10000900~ “3 TP= C.l0@090’J?lF 03 N&F= P5 NPFz ~1’3 JJ= 4 

#= 30 Is= 0 NIM= 30 GA’-+= n, l’JbCPO3flF-Pl 

F01= 9.22260577C 01 PB= 0,177800nnE-ni 

PRESSURE= 0013C24449E 

ACC= O,JOR55492F 01 
VELOCITY= O.l4756?03E 
TIME: Lr9~92970Dt 00 

00 (TORQ) JTPVSS= t.56720347f 01 

(FT/SECISO.~ 
02 (FT/SEC, 
(SEC) LENGTH= O,PA179133E 01 (FT) 

PRESSURE= O.T4Ol2246E-Gl (TDRR) gTRFsS= ?.64463362E 01 

ACC= 0198958355F fl0 (FT/SECoSC..) 
VELOCITY= OalSE56437E 02 fFT/SECj 
TIrE= 0.16264091E 01 (SEC) LENC,TH= C.19635927E 02 IFTI 

PRESSURE= 0*45C96123C-01 ITORI') STRFSSz 0.79949453f. nl 

ACC= 0139443395E'OO (FT/SEC~SC,) 
VELOCITY= o.16567752E 02 fFT/SEC) 
TIME= 0.28334021L 01 (SEC) LENr,lH= 0.39271653E 02 (FT) 

(PSI) 

IPSII 

(PSI) 

PRESSURE= 0.3163bf’61E-01 (TCRR) S'RESSz Or11092160E 02 IPSI) 

ACC= @.28375219E 00 ~FT/SEC,SC.) 
VELOCITY= 0,17329612E 02 (FT/SEC, 
TITHE= c.51477191E 01 (SEC) LEN<lti= fl.?P5433C6E 02 fFT) 



7. Block diagram variables.- -- ---- 

ts . . . time accumulated in region of singularity 

VEL . . . i (velocity at tip of balloon) 

A=CL. 1 
J 7/ dh 

GI(A) + CI(A)' 
--QUAD = G mEl ,r’l’~ l Qmj l 

h"CLi, 1 

where 

TAU = CLi-1 + H*(m'6 - ,4 + Tma> 

H= 
CLi - cLi-1 

6-~ 

CL corresponds to the text variable L 

a=h 

I 

NN 7 
CI(TAU) = CII(a)da - QQUAD = ,+ c Gq’QQpq’CII(~P) 

a=L P 
5 
= q=l 

0 

where 
ALP = CL0 + HHs(p.6) - q + TTpq 

HH = TAklNCLo 

QQP,y TTPq 
have the same meaning as Q,, Tma 

CL0 corresponds to the text variable Lo. 

Note: The program operates in the C.G.S. system of units, 
however for convenience, the input and output are 
in more familiar units. 
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BLOCK DIAGRAM NOTATION 

/ 
DO 0 

IF 0 
[YE-J 

PRINT L-J 
0 

ARITHMETIC STATEMENT 

DO LOOP 

DECISION 

READ INPUT 

WRITE OUTPUT 

CONNECTION 
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MAIN DEPLOYMENT PROGRAM 

READ INPUT 

PRELIMINARY 
CALCULATIONS 

DO A 
II = 1, JJ 

f 

LJO II 
M = 1,N 

f TIME = TIME + QUAD 



FIRST STAGE COMPUTER PROGRAM LISTING 

C 





rfi :n 7~2 
250 LIET=:‘41 PY”CCCI~CLO~CL”)“(CL!~,S”(I.-FLOL~/AL} )~io2-.‘“47”‘F~r:~L:““7 

l”((TLRLl/~LP)uc2’1.) +(AZ+Pr~~FLOLl)"(FLn~l)~~(FLRLl/i!LP-~.) 
2-(87+CI~~FLnLl,oFLOLl~AL~G(FLr;L]/AL?) + (C 7+DZ+FLOL 1) e ( FLcL 1) G 
3(FLsLl- ALP 1, -.~“In7+F:~~FLOLl)~~~LnL1” 
4 (FLRL~~“~~‘~L~““~) + E?/3. ~‘FL~L~.~(F!~~L~““~-AL,P”‘!~)) 

752 GI =GTPT * GiET 
tFll~r?91~20?1201 

202 cI=n.o 
IF(l-'4) 305t306r305 

so5 IF(7-L) 3059307.30:~ 
307 PRTnF-~~.F+j/13%. 

XLHLI= ‘CL (‘fj+l j /CLFL 
XLHLfi= CL ~II+l) /CL@ 
ULOR( ,g- CLQ/CL (II+11 
IF(AL~“CLTL-CL(II+~)!~S;,~S~.~S~ 

256 ~fC=?.~~PI/(W~~453,5)~(CCCaCI1/ICL(~~+))~~~~?)~~(~.-XL~~L) +%.“fiA<:A40(P 
lOR*wl ORI +W?i 1 /JO,-46 

GO TV 757 
755 ACC=P.aPI/(W”453.6)afCr.‘C~(47 - P~~xL~~L~+cz”x~.RL~~~~- ~?.t:xLRL!+-z3 

1+ E74XLPL1”~4)/(CL(I:+1)““2) “(l.-XLnf4L) +2.‘;AP.(~APofPnR~SXLOf\~ +DC 
2cl)/30.eP 

757 CONfJNl~f 
STRES=PcF5S~kA+CL (1 I+] I b.0f)5mtj O,i/ (cLFL”:fiq) 
~R~~TF!~,3~~~PRTO~~STHES,9CC 

20~ FORMPT(]~~,9H~~ESSl.lRF=. E~~.P.?X,~H(TOFR),~X,~~STRESS=,F~~.R,~%,~H~ 
1~SIl/l~~r4HaCC=,tl6.~.~X,l2~(FT/S~~,~~.}) 

GO TO 105 
3Cl FNTV= NIY 

NN=FNIV”(TAU/CL (JJ+J 1 )~(2.- TAIJ/C!. (JJ+l) 1 +?. 
FL NFJ=NM 
HH=(TA!‘-C:L~)/(~.SFFLNF~) 
OQUAll =O. 
110 If-‘1 f’h’=l,KpJ 
DO 1n1 LL=lr7 

FL yMul=Ht, 
FLLL=LL 

IF(1-~‘~)22~3i!,72 
22 TT=O.f’ 

GO Tn OR h 







Computer Program for the Inflation Stage 

1. Purpose.- The purpose of the program is to provide a 
solution of the differential equation 

-.. 
mx = p x sin d - FQ + & (Fd x cos 8) 

where 

Fe = Fe(x) 

(39) 

(45) 

F$ = &r, ds 
3 

(44) 

subjected to the constraints 

dx2 + dy2 = ds2 (42) 

x 5 Xl (42) 

independent of time and the initial and boundary conditions 

x(t=O,s) = x0(s) (140) 

y(t=O,s) = Y,(S) (140 

;c(t=O,s) = ?(t=O,s) = 0 (142) 

x(t , s=O) = G(t,s=O) = Y(t,s=O) = 0 (143) 

y(t,s= $Rl) = y(t,s= 5 Rl) = j;(t,s = $ Rl) = 0 (1443 

2. Method.- --- In order to carry out the numerical solution 
of the problem we substitute the continuous system by a discrete 
system of masses mk interconnected by rigid, massless links, 
which are determined in the following way. 

Taking into account that the area of the spherical surface 
between two parallels is proportional to the distance between 
the parallel planes we divide the radius Rl of the full sphere 
into an integer number K. The mass of each portion per unit 
angle of parallel will then be 

;'i- 
m = (145) 
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where M is the total mass of the balloon (including the L 
chemicals). Assuming that the mass between two successive div- 
ision points, k and k+l, is linearly distributed along the chord, 
the mass rn" can be substituted by the two masses 

9c m:k 2Xl,k + xl,k+l 
mk = 3 Xl,k + xl,k+l *%k+l 

applied at point k, and 

ik my< Xl,k + 2xl,k+l 
mk+l = 3 xl k + xl k+l *'k,k+l 

, > 

applied at point k+l. Where 

Xl,k' xl,k+l are the radii of the parallel circles of 
points k and k+l in the full sphere. 

*'k,k+l is the length of the chord joining points k 

and k+l in the full sphere. 

The total mass applied at point k will then be: 

9; x1 k-l + 2Xl,k 
f 

;'; 2x1 k 
mk = x& + ~1,~ ASk-l,k +? 

+ xl,k+l 
x& + xl,k+l Ask,k+l 

wherethe first term in the right hand side is the contribution 
3; 

from the mass m between points k-l and k and the second 

term the contribution from the mass mik between points k and 

k+l. Finally 

mk = -i%i? 
Xl,k-l+ 2Xl,k 2x1,k+ xl,k+l 

Xl,k-1-t Xl,k ASk-l,k + Xl,k+xl,k+l *'k&+1 1 i , 1 
(146) 

On account of symmetry we need to consider only one quadrant. 
In particular, we have 

m 
0 = ii& AS,,1 
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for the mass at the pole and 

Xl,K-l+ 2Rl 
mK = & xl K-l+ Rl ASK-l,K 

2 

for the mass at the equator with Rl = xl K. Analogous consid- 
erations yield for the horizontal compone;t of the pressure act- 
ing at point k the value: 

I‘Ik = (Xkwl+ 2xk)(Yk-l- Yk) + (2xk+ xk+l)(yk- yk+l) 3 

where 
(147) 

Xk-l' Xk' xk+l are the radii of the parallel circles 
of points k-l, k, k-t1 in the balloon 
at time t. 

yk-l' yk' yk+l are the distances to the equatorial 
plane of the points k-l, k, k+l in 
the balloon at time t. 

P is the total internal pressure in the 
balloon at time t. 

Under the same assumptions, the distance from the centroid of 
the element k, k+l to the polar axis will be 

x 2Xl,k + Xl,k+l 
k,k+l = Xk + 3(~~,~ + x~,~+~) (xk+l- xk) (148 > 

in the deformed state. 

The total pressure acting on the corresponding parallel 
plane will be 

"k,k+l = p n %,k+l 

and the membrane force in the meridian direction acting on the 
element k, k+l will have a vertical component per unit angle 

yk- yk-tl 2 
Fd k k+l'kyk+lAsk k+l 

=&G k,k+l (149 1 
2 , r=o 
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Hence, its horizontal component will be 

'k k+l = Fd , k,k+l 
-2 

p Xk,k+l 

Under the same assumptions, the resultant hoop force acting at 
point k will be: 

F@k 
yk-l-yk 

= F@(xk) = (xk- xkml)2 ( X-Xk-1) F&+x + 
Xk-l 

yk-yk+l 
xk+l 

+(Xk+l-xk)2 
/ 

(xk+l-x> Q(x) dx 

Xk 

Assuming that F@(x) varies linearly in each interval we obtain 
finally 

FQk 
yk-l-yk 

= B,(x,? = 6 F&$-1) + =&k) 
I 

2Fe(xk) + FQ(xk+l 

where F (J (4 is given by Equation (79). 
1 

The numerical solution is obtained by replacing the differ- J 

ential Equation (140) by i 

1 "k=q Hk-Fek [ + Gk] (152 > 

where 

Gk= , 'k k-t1 - 'k-1 k (153) 
, 

and the constraint Equation (143) by 

(Xk+1-xk)2 + (y,,-Y,)2 
2 

= *'k,k+l (154) 
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To determine the position at time tn = tn-1 + Atn, we 
assume that the pressure terms remain constant during the time 
interval Atn and calculate: 

H;: = + 2Xk “-l)(y;r: - YE-l) + (2x:-l + x;;;)(yy-y;;;) 1 
% k+l = , 3 (%,k+l)' 

with 

-n 
Xk,k+l 

= x;-1 + ;$,k + Xl,k+l (x;;; _ x;-l) 
1 k+X1 k+l , 7 

where 

vO 
P, = Pc + PO 7 is the internal pressure at time t 

n-l n-l 

PC 
is the constant part of the pressure 
(sublimation pressure). 

PO 
is the initial value of the variable 
part of the pressure 

“0 
is the initial volume 

V n-l is the volume at t=t n-l 
n-l n-l 

Xk ' yk are the coordinates of point k at 
t=t (closing value of the itera- 
tion p&ess for Atn-1). 

It is understood that the term "initial" refers to the beginning 
of the inflation stage (end of deployment). 

As shown in Appendix 2, the gases generated by sublimation 
were not enough to compensate for the change in volume during 
most of this stage, so a more realistic expression for the 
pressure will be 

“0 
P,= - 'l 'n-1 

where Pl is the total pressure at the end of the deployment 
stage. 
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The iteration process is carried on as: 

(a) xi>m = X*‘l k 
+ ;n-1 

k 
Atn + ;;;,m-1 $ 

(b) F"e;(" = n,m F&k 1 

(c) YES” = 
k+l 

cd AS;Bl,r-(x:'m-x;~$)2 
r=K 

(d) 7;'" = --.+ (y;jm- y;-L g-1 *tn)+ j;y-1 

n 3 

(4 $;r+l 
n,m 

= xLi? - Xk 
n,m 

yk - Y;g 

(f) G;>m = 

l n,m (8) Xk = 

and repeat steps 

--n,m 
Fk,k+l - pk:T; k , 

' 
2 

[ 
+ (H;: - F"ef + ($") + ;;nkfm-' 

(a) through (g) until convergence is attained. 

In the above expressions 

G;: -1 an-2 + ;n-1 
=X k k At,-1 is the value of the horizontal 

velocity of point k at t=tn-1. 

9; 
-l= an-2 

yk + y; -lAt n-l is the vaJue of the vertical 
velocity of point-k at t=t, 1 

-n-l 
yk is the value of the vertical 

acceleration of point k during 

;20,'2; %:% :&?-l;:P&:R-2 
process for Atn-1). 

The first supra index n refers to the time interval under con- 
sideration while the second m refers to the iteration cycle. 
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It was found that the convergence of the iteration process 
improves markedly by averaging the calculated values with the 
ones obtained in the previous iteration cycle and hence, steps 
(d) and (g) were modified accordingly. 

The process starts at t = 0 by assuming as initial value 
for the horizontal acceleration 

1 
..l,o = Hk 
Xk iii- k 

i.e. neglecting the terms Fek and Gk as compared to Hk in 
Equation (127). As shown in Section III, F@(x) attains signif- 
icance only towards the end of inflation. While the balloon is 
very elongated in shape (at the beginning of inflation), the 
meridian forces FQ will be almost parallel to the polar axis 
and their horizontal component will be small. The pressure p 
will have its maximum value and its direction will be almost 
perpendicular to the polar axis, hence, Gk will be small and 

Hk will be maximum. 

It was also found that the convergence of the process was 
..n,o improved by assuming as a starting value the xk acceleration 

in the x direction during the n th time interval, the value 
obtained by linear extrapolation, thus: 

l .n, 0 
Xk 

_ ;;n-1 
k 

= ;;n-l _ %n-2 
k k 

or 
--n,O 
Xk 

= 2...-1 _ g-2 

We select the time intervals Atn so that the equatorial radius 
increase approximately by a constant preselected percentage -) 
during each time interval. To this end we determine the first 
time interval At1 by setting 

on account of symmetry and the very elongated initial shape, 
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we have 
1 O ..I,0 HK po(xK-l + 2x3 poxK 

XK =mK= 3mK 
-w- 

"K 

Hence 

where p, is the value of the internal (residual plus sublima- 
tion) pressure at the beginning of the inflation stage. 

The subsequent time intervals are determined by the formula 

Ln-l Atn = y 7 
n-l 

where 
n-l 

2 XK 
- x;-2 

"n-1 = n-2 x"K-l -I- XK 

is the percentage increase (referred to the mean value) of the 
equatorial radius during the previous time interval Atnel. 
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Program Symbol Definition Text Symbol 

DT2 

DTNl 

X(K), E(K) 

XMP (K) 

XlTP(K), ElTP(K) 

XlTPP(K), ElTPP(K) 

X2T(K), E2T(K) 

X2TPM(K), E2TPM(K) 

X2TS(K) 

CPX(K), CPE(K) 

F(K) 

FTH(K) 

m(K) 

PN 

First time interval 

n-th time interval 

Current iterated value of the 
coordinates 

Previous iterated value of the 
coordinate 

Value of the coordinates at time 
t = t n-l 
Velocity components at time t = tnml 

Velocity components at time t = tns2 

Current iterated value of the 
acceleration components 

Previous iterated value of the 
acceleration components 

Value of the horizontal acceleration 
to start the iteration 

Coordinates in the final sphere 

Horizontal component of the meridian 
force 

Hoop Force 

Mass 

Internal pressure at time t = tn 

*5 
Atn 

xk 
n,m n,m 

' yk 

n,m-1 
Xk 

n-l n-l 
Xk ' yk 

kk 
n-l 

9 & 
n-l 

*k 
n-2 n-2 

, ?k 
n,m x. ,Y n,m 

k k 

Xk 
n,m-1 n,m-1 

' yk 

Xk 
n,O 

Xl,k' Yl,k 

'k k+l Y 

FQk 

"k 

pn 



3. Input.- The input consists of: 
Balloon parameters: 

(a) Total weight of 7;; b;iloon including 
the chemicals. , 

(b) Diameter of the fully inflated balloon. 
@)I), ft 

(c) Total thickness of the skin. (HS),mil 
(d) Modulus of Elasticity of the skin. (YE), psi 
(e) Poisson's ration. (PORT) 
(f) Initial weight of sublimation chemicals. 

(WOO), lb 
(g) Inside diameter of the canister. (DIAC), in. 
(h) Number of meridian pleat folds. (NPF) 
(i) Number of accordion folds. (NAF) 

Pressure parameters: 

(a) 

w 

cc> 
w 
(4 

w 
w 
o-4 
(0 
(j ) 

Residual gas pressure at the beginning 
of the deployment stage (usually set equal 
to the initial gas pressure in the canis- 
ter prior to deployment). (PORST), torr 
Chemical gas pressure. (PCC), torr 
This is the vapor pressure of the subliming 
compound in solid-vapor equilibrium; a typ- 
ical value can b? obtained from Figure 15 
of the reference. 
Average temperature of the balloon. (TP),"F 
Altitude of the Orbit. (HSS), km 
Aspect ratio. (FBB). This is the geometric 
view factor which represents the relative 
earth reflected energy incident on the 
satellite. 
Absorptance of the satellite skin to earth 
radiation. WPE) 
Absorptance of the satellite skin to Solar 
radiation. (ALPS) 
Chemical latent hfat of sublimation. (FLAMS), 
ergs - (gm-mole) 
Total emittance of the satellite skin. (ESPO) 
Chemical molecular weight. (FMOLW), gm/mole 

3Clemmons, D. L. Jr., The ECHO I Inflation System, NASA TN D-2194 
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Control parameters: 
(a) Percent increase of the equatorial radius 

during each time interval (GAM2). This value 
adjusts the At during each time interval 
such that the equatorial coordinate X(KK) will 
move outward approximately GAM2 percent. The 
decimal equilavent of the percent is read in 
as input (5 percent is read in as 0.05). See 
3-c for suggested values and also its relation 
to KK. 

(b) 

cc> 

Closing percent change in X coordinates between 
two successive iteration cycles (CGAM). When 
the percent change in each X coordinate between 
two successive iterations reaches this prescribed 
value, the iteration loop is considered converged; 
however, the iteration process is forced to go 
through a minimum number of cycles before it 
tests the above mentioned coordinate percentage. 
The decimal equivalent of the percentage is read 
in as input. A suggested value for CGAM which 
has resulted in successful runs of the program 
is 0.001 (i.e. 0.1 percent). 
Number of mass point divisions along the meridian 
is (KK). The magnitude of this number sets geo- 
metrical increment of the mesh size for the nu- 
merical process, whereas (GAM2) (description 3-a) 
sets the time increment. Suggested values for 
these two parameters which have given successful 
runs for a wide range of problems are: KK=19, 
GAM2=0.05, however, the program is not strictly 
required to use these exact values. A range of 
values which also should give successful runs are: 

0.06 '" GAM2 >_ 0.025 

The larger the number of points (KK), the smaller 
the percentage (GAM2) used about the suggested 
values KK"19, GAM2=0.05. 

(d) Frequency of time printouts (MMM). The total num- 
ber of time printouts is approximated by: 

Integer part [ 
loge(NPF.NAF/8) 

GAM2sMMM.2 ] +2 

For example, if every other time calculation (lead- 
ing up to the final result) is desired, set MMM=5, 
and for the Pageos sample problem the total number 
of time printouts would approximately be: 

Integer part + 2 = 18 Print 
outs 
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SUMMARY OF INPUT CARDS FOR INFLATION STAGE 

Text Computer 
Variable Variable Definition and Units of Input Format 

W 

D1 
hS 
E 

V 

W co 

Dc 
n 
N 

PO 

PC 
T 

HS 
FR @) 

aE 

"S 

?\ S 

E 

M: 

W 

Dl 
HS 
YE 

PORT 
woo 

DIAC 
NPF 
NAF 

PORST 
PCC 
TP 
HSS 
FBB 
ALPE 

ALPS 

FLAMS 

EPSO 
FMOLW 
GAM2 

CGAM 

KK 

Total weight of Balloon (including E 10.5 
the chemicals) (lb) 
Diameter of Inflated Balloon (ft) E 10.5 
Total Skin Thickness (mils) E 10.5 
Modulus of Elasticity of the Skin 
(psi> E 10.5 
Poisson's Ratio E 10.5 
Initial Weight of Sublimation 
Chemicals (lb) E 10.5 
Inside Diameter of the Canister (in.) E 10.5 
Number of Meridian Pleat Folds I5 
Number of Accordion Folds I5 

END OF FIRST CARD 

Residual Gas Pressure (torr) E 10.5 
Chemical Gas Pressure (torr) E 10.5 

, 

Average Balloon Temperature (OF) E 10.5 > 

Altitude of Orbit (km) E 10.5 
Aspect Ratio E 10.5 
Absorptance of Satellite Skin 
to Earth Radiation E 10.5 
Absorptance of Satellite Skin 
to Solar Radiation E 10.5 
Chemical Latent Heat of Sublimation 
(ergs - (gm/mole)-l) E 10.5 

END OF SECOND CARD 

Total Emittance of Satellite Skin E 10.5 
Chemical Molecular Weight (gm/mole) E 10.5 
Percent Equatorial Radius Increase lj 
for Each Time Interval E 10.5 ii 
Percent Coordinate Change Between 6 i i 
Two Successive Iterations E 10.5 

,;I 
I 

Number of Lumped Masses 15 3 !' 
Frequency of Time Printouts I5 .1 1 

8 
END OF THIRD CARD $ 

:/ 6 

There are, therefore, three cards of required input for the 
operation of the second stage program. 
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4. Output.- The first page of output consists of the input 
which is then readily available for checking and reference pur- 
poses. 

The second page consists of the starting time, the total 
pressure (torr) at the start of the second stage inflation, ratio 
of the starting volume to the final inflated sphere volume, and a 
list of the initial coordinates which are nondimentionalized in 
two different ways, that is, division of the coordinate by Rl 
(radius of inflated balloon), and secondly, division by the coor- 
dinates of the fully inflated sphere. The headings for these var- 
iables are respectively, TIME, PRESSURE, VOLUME RATIO, X/Rl, E/R1 
X/CPX, E/CPE. 

The remaining pages of output will be similar, therefore on- 
ly a typical pair of pages will be described. The number of these 
intermediate printouts leading up to the final result depends on 
the input number MMM described in the input section. If the solu- 
tion converges, the page containing the final result will have 
the words COMPLETE SOLUTION written at the bottom of the page. 

Also listed on the final page only (just above the words 
COMPLETE SOLUTION) are the maximum membrane stresses which occur 
at the completion of the inflation process. These three values 
are respectively, POLAR STRESS, EQUATORIAL MERIDIAN STRESS, 
EQUATORIAL HOOP STRESS (note only one value is listed for the 
pole since the polar meridian stress and polar hoop stress are 
equal). All stresses are in psi units. 

The written material on a typical pair of pages consists of 
the following. 

First of the pair: 

0 The time accumulated during the second stage up 
to the time of the printout, (it must be empha- 
sized that this particular time value does not 
include the time accumulated during the first 
stage) 

l The current total pressure (torr) 
l The ratio of the current volume to final volume 

of the fully inflated sphere 
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a The number of Nth 
Y$ 

time interval and the Mth 
iteration 

'I 

1 

A list of the current coordinates, nondimensionalized two / 

different ways (i.e. division of the coordinated by Rl (radius -.i 

of the inflated balloon, and secondly, division by the coordinates j 
of the fully inflated sphere), and finally a list of the meridian ./ 
stresses (psi) are tabulated. The headings for these variables 
respectively are, TIME, PRESSURE, VOLUME RATIO, N, M, X/RI, E/RI, 
X/CPX, E/CPE, STRESS. The initial coordinates, the results of 
the first time interval,and the results of the final time inter- 
val are printed regardless of the value of MMM. : 

Computer Variable Text Variable Notation fi 
X/R1 x/R1 f 

E/R1 y/R1 
I 
[ 

X/CPX 4x1 I 
E/CPE YIYl Ji 

As the sphere inflates in time, X/CPX, E/CPE, and VOLUME 
[ 

4 
RATIO all approach unity. 

Second of the pair: 

The horizontal and vertical accelerations (ft/sec/sec) and 
velocities (ft/sec), and vector velocity magnitude are 
printed. The headings for these variables respectively are, 
XZI', E2T, XlTP, ElTP, VELM. 

Computer Variable Text Variable Notation .A 
I 

X2T 
. . 
X 

E2T 
XlTP 
ElTP 3 I 
VELM II *2 

X + y2 

5. Cutoff.- ---a Upon convergence of the numerical solution, the 
program arrives at a normal exit and calls for a new problem, at s 

the end of the last problem the program stops. At the end of each 
converged solution the words COMPLETE SOLUTION are printed. 

If the solution does not converge the problem is terminated : 

in one of three ways described here, and then calls for a new 

problem; at the end of the last problem the program stops. 
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NOTE-A 

This type of failure is indicated on the printout sheet 
by the words "PROGRAM WILL NOT CONVERGE'ON M-CYCLE, 
SEE PROGRAM WRITEUP, NOTE A, STOPPED AT M = -, NC " 

indicating the iteration cycle M and the time interval 
N, at which the failure occurred. This type of failure 
may be corrected by making CGAM larger. This failure 
should rarely occur in the usual range of parameters. 

NOTE-B 

Failure in this case is indicated on the printout sheet 
by the words "PROGRAM WILL NOT CONVERGE ON N-CYCLE, 
SEE'PROGRAM WRITEUP NOTE B, STOPPED AT M = ,N= . - 
This type of failure should rarely, if ever, occur and 
would probably be due to erroneous input data. 

NOTE-C 

'Failure here is indicated on the printout sheet by 
the words "PROGRAM FAILS KA TEST, SEE PROGRAM WRITEUP 
NGTE C, STOPPED AT M = -, N= ." Indication of 
this type failure means that the AX generated was 
larger than the corresponding arc length AS, for a 
large number of points on the meridian." This may have 
happened in one or combinations of the following ways. 

(1) GAM2 too large for a given KK or KK to 
small for a given GAM2, which moves the 
coordinates out too large a percent, for 
a given time interval. 

(2) GAM2 too small for a given KK or KK to 
large for a given GAM2, such that numerical 
roundoff errors in the computer cause 
failure. 

* If nx 7 ,\s for only a few local points, the TEST BRANCH 
loop shown on the block diagram makes provisions for this 
case without failing the entire process. 
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6. Sample problem.- The PAGEOS balloon will be used as the 
sample problem for the inflation stage. 

Parameter Computer 
Variable Value 

Total Weight of Balloon 
Diameter of Inflated Balloon 
Total Skin Thickness 
Modulus of Elasticity of the Skin 
Poisson's Ratio 

W 147.5 lb 
Dl 100 ft 
HS 0.5 mils 
YE 0.66~10~ psi 
PORT 0.475 

Initial Weight of Sublimation Chemicals 
Inside Diameter of the Canister 
Number of Meridian Pleat Folds 
Number of Accordion Folds 
Residual Gas Pressure 
Chemical Gas Pressure 
Average Balloon Temperature 
Altitude of Orbit 

woo 10 lb 
DIAC 26.5 in 
NPF 85 
NAF 418 
PORST 1 torr' 
PCC 0.003981 torr 
TP 100°F 
HSS 4250 km 

Aspect Ratio FBB 1. 
Absorptance of Satellite Skin to Earth 

Radiation ALPE 0.03 
Absorptance of Satellite Skin to Solar 

Radiation ALPS 0.1 
Chemical Latent Heat of Sublimation FLAMS 0.56x101'ergs- 
Total Emittance of Satellite Skin EPSO 0.03 (gm/molej' 

Chemical Molecular Weight FMOLW 122.12 gm/mole (: 
Percent Coordinate Increase for Each At GAM2 0.05 

$ 
if ili 

Percent Coordinate Change Between Two !:I 
Successive Iterations CGAM 0.001 i 

Number of Lumped Masses KK 19 
'i 

- 
Frequency of Time Printouts 5 / 

1 
Result: Time for second stage inflation - 5.23 set 1 

A condensed printout sheet for this sample problem can be 
: t 

UF ! 1, 
found on the following page. a i 

Hence the total time for the first stage deployment plus the 
time for the second stage inflation is the following sum: 

Total Time = 5.15 + 5.23 = 10.38 set 
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A~Sn’+‘..r.F SA1.5K1’4 TU SflLAFi HAOIAr.= O.lnOnnaOFE on 

1. A 1 f ‘” T I,$,&: 5\11iLIr PTt~-l~ll~kGS/(jRAr’t= o.5ounon3nE 1p 

1n~nL tv11,CCFf .oF SaT.Srlt~= O.3n~OnooOE-0) 

,.!rt~GlI~Ah h[ ~f~tillb.,AH~/“f.JLC)= o.lz2~2cmOc nj 

qEMAib1 It,6 4kt PQOGkAH CnblT,,N.L VLP tAtILk S 

.,bMq= I# , 5 u II 0 r: 0 n rj r- u I 
('?.A:'= II, I !Jol,no~oF -!-IL 

YYZ I" 
I ., -4 ,.I = 5 

TlMk. n,llr,ufbuuuuL-3u FRESSutiFz 0.31C43~65~-01 VOLU~!f. RaTlO= 0.2fJ57h73at-01 

K/Q1 

0.0050ilCOOE-30 
0.49318396L-01 

E/U1 K/CPX ElCPE 

I 
% 
3 
4 
3 
6 
I 
* 
Y 

I ” 
11 
IL 
I’ 
1’ 
15 
I’ 
I’ 
tr 
I’, 

O,hA14313hE-O? 
0.62’1454352-92 
0,94314aO4E-03 
o.l03ldh47L-01 
U,llld4360E-01 
O.l1h77442k-01 
~.lZs76~76E-O1 
O.l7r95057E-01 
0.1344l'~P6E-Ol 
O.l3tb24339E-01 
U.l4147?21E-01 
0.14414s62E-ni 
O.l4630199L-01 
0,14795511E-01 
0,1491248nti-01 
O.l4982219E-01 
0,15005393E-01 

0.15707963E 01 
o.i2359no~~ 01 
0.10949141E 01 
kJ.w35lln7hE on 
C.69lliZSUE 0'1 
lJ.~0700901~ 00 
0.)2972764~ 00 
O.‘5746354E @r) 
!I.509OJOY5C 0" 
U.52359877C 0'7 
@.*6T155399C 00 
“, 39942523E 011 
n.33jr3690E 00 
?.2OlSfibilTE On 
'U.:2uoY3091: of! 
ri.1~144~08~ on 
~.1113~lJI~ 9n 
0.5556~173t.-01 
~.ooJoc~ooo~-3~ 

o.l~unrtnoot 01 
C.l4935779L-Ul 
0,14954511E-01 
0,1*9f+t13nt-01 
n,i497un63~-ul 
O.l4975772E-01 
fi.l477959CE-01 
0,1&94243AL-31 
0.l41R5639C-oJ 
O.l494d1~4f.-ul 
0.149903’13~-01 
o,l4992445E-01 
C.l4994JeIlE-01 
o.l4996?13E-01 
n.l49979hTE-01 
O.l4999463L-01 
~.1~001320E-01 
O,lG902954E-01 
n,l*fln53Y3t-31 

0.15707963E 01 
0,13093~12i 01 
0.1232u9506 ?I 
0.11035645E 01 
0.11474bOTE O! 
U.11194163E 01 
O.lnY69573t ‘31 
0.1~7n579nE 0: 
~3.1061W25E 01 
o.ln508384k Q!I 
0.10404926t 01 
0.1~371105~ U! 
0.102555632 r)! 
O.IP279T19E 01 
O,l~l.*lTL9i 9J 
0.1n1a3.995t 31 
0.10if45745t 01 
0.10576063E ~1 
u.l”OOO~nOE 51 

93 



TIHF. n.52326431t 01 PALSSUREr 9*18332959E-02 

CMFHICAL *ElGrcT RC"AIklNG= 0.9633354X 01 

Pf.ktwE XlRl t/a1 

0.0Ot00000~-3i3 
0.33020303E On 
0.45134u11E 00 
0.53V2627JL 00 
o;c11254719t oc! 
O.S?Jllw63E on 
0.72b3W52E 00 
0.77212925E DO 
O.Fl249502E OO 
O.R4790045E 00 
O.~7915?66~ 01) 
O.YObe.175PE (10 
0.931373AZE 00 
O.95J15qR4E CJP 
G.Y722CSlhE Gr! 
0.9nt jO')YhE ?1rl 
U,9‘~4~77&2E 00 

0.1026C93nE 
0.97Gn062jE 
1~.49@66421f 
‘-‘.432#61646 
~.77400166E 
0.71570~42~ 
b.55956736E 
0.6036R319E 
0.54k42034E 
0.49339222E 
0.43h63749~ 
C.36412775E 
~!.32983081F 
r1.2756wo3E 
O.72155711~ 
0.166716b7E 
0.11113n70F _-. 

volu~c R~TlOs 0~978f1717sL 00 Na 83 

I* 0.99idl795E r)c 0.555669ROC’01 
19 o.lo0nonon~ ~1 r,.qOOOGOOOE-3fl 

II 
13 
13 
1 4 
IS 
lh 
17 
I* 
\v 

7 
\ 
4 
5 
c, 
7 
P 

1;: 

x21 FiT 

0.110n00000L-3R 0.0s~030rjoE-3n 
rl.OOr!~000~L-3A -U.li16.l579E 03 
fi.5534oh42E Cl -0.4AlassruE 02 

-~.tJll4il19L 01 
-9.165flb533C Ut 
-0.8ORb4257E til 
-0.8123!~96@~ 01 
-0.12R7~914L 07 
-0.lh374964E 02 
-O.lYlhoE7~C 02 
-0.19191bZbE 07 
-0.1442371WL 02 
-0.202A3YY4L 07 
-0.26599167E 07 
-O.3521t451E 07 
-C,414fJ*19hE 02 
..3,4221~Y23L O.! 
-J,394SrlblE 07 
-C.j773dO95E (17 

-0.44l55526E rl? 
-0.42d66811L 02 
-0.459407?OE 03 
-O.Qh~ll+YhE 02 
-0.44~22216E O? 
-0.L9954424L 02 
-0.4Y3021335E 02 
-O,Qb7311ln~ fig 
-0.4316’~h’lat 03 
-0,39?8534.X rl? 
-0.3470740rE 117 
-O,ihL6b?47E fl2 
-0.15hhlP47t 07 

X/CPX 

0.1n000000t 01 
0,1~00r~000E 01 
0.9'107372E on 
0.97249.375E 00 
n.9723i393E on 
0;97136224F. On 
C.97277001E O(I 
3.97400503E 00 
o;975ee15or 09 
0.97794428E 00 
0.98042794L 00 
0.94344199t 00 
0.947144l4E 00 
~.99159145E OP 
@.976S44a5t OF 
O.l”n000rl0E 01 
0.1n000000E 01 
0.1~000000E 01 
O.InO~!JEOOC 01 

XllP 

o.rmn0no~t-3n 
O.F~OnO~OlE-3ll 
o.v9536r?3E 00 
O.l'6?3537L 01 
0.747*2?22E 01 
0.37735259E 91 
0.44J55514t 01 -0.119r~U6Y7E 02 
0.579~937clti 01 -u.ln845402E 02 
0.751'i!JA9E 01 -0;9683973Pc oi 
0.9AO35734L 01 -0,84526?0nE 01 
O.l~FQl565t 02 -0.73949263E 01 
O.l49&998OE 02 -0.5'1475192E 01 
'3.1~356317E 02 -0.44Yn8264L 01 
0.7'446417E 02 -0.34022593E 01 
0.~7111375t 02 -ll.21382185E 01 
0.376454YSE 02 -0.1,1594462E 01 
O.376717u7E 02 -0,34256?37L 00 
0,4!37%111i 02 -5.3~.n~3@0RC-01 
O,r?*~Zq55F 02 0.000@0000t-3R 

FINAL STRESSES 

EICPE 

0.1026693OC 01 0.21165016E 03 
0.10284944E O? ~,1554150st n 
0.10119137E nl G.l?9ZIOb6t ?P 
0.19006443E nl O.ln&Y46a7E 03 
0.9966493~ on U.lF2rj663E C’ 
0.99277P7OE oc ~.)43,?4?45~ 'I? 
0.99146937E 09 ~~,i12111>~L 7: 
0.990351WE 02 O.U715659bE 0’ 
0.9900b641E 03 u;843vnob3t 52 
0.970?1522~ Or C.Ol310612E 32 
0.99097a46E an 0.143J1944t 02 
0.99256900~ CM 5.752274ME 02 
0.9?5~5W6~ on tJ,l?b?vni4’ ?i 
0.99992912E c'! I~.66YY:5hl.L 37 
0.10066507~ 01 3.69JC441;L "2 
0.10130517E I-J! J.59lhbAd?k 07 
O.lh227129t 01 C.b71>3545L 07 
0.13572792E O! 0.939lt~lhE O7 
O.lOo!30llOOE 01 O.Y9917~1ht 07 

-0.95730745E 01 
-0.95730795E 01 
-u;16007107t 02 
-0.14949167E O? 
-tI.l3663454E 32 
-3.17952596L 02 

148 1 

SIPESS 

vELn 

0,~57~O~YSC 01 
rJ,751307YSL 01 
U,l6@38~57E .Ji: 
".I5bllli~~ .? 
0.14UH2.~451 Cl? 
o.l3j41*5oL :z 
0.1271Iv7Ot 02 
0.12197329t 02 
0.122SWL?E 97 
0,?2'f335h9t 5' 
G.14,170~55 02 
3.I5:n5115t c7 
ti.lOY4b24St II% 
9,.?2702T92! V? 
0.27j94noFt 27 
O.32662hh3L ":' 
0.37672"0?: ;.? 
'l.ulJi'21L7t 0' 
O,'+2bCjfl55E 07 

rc, eu STilFSS rust)= n.7377n35M n4 

tO.CtR.STr?ESS (pslI=, n.207Y6641C 04 

tO,wOP SlRfSS fPSlli O.30232343E n4 

C@twLF7F SOLUTICY 

94 
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SECOND STAGE COMPUTER PROGRAM LISTING 

C SECqNn S;AGE RALLOC)N !NFLATIrJN PREt;SilbE MOIlIF. 
DIMENSTnN F (50) rX (501qFP (50) rXP (50) .F?T (50) ,X2T (50) (YlTP (50) ,Q(5!7) 

lvF(5n) ,YlTPP(4r3) rFTH(5’3! ,G(q3) ,xGG(50) rS(51?) ,ElTPP(S”) ,FMM(SC\), 
2clT~(sn)~x~N(~D),pHI( 5%“) zCoY(50) q%HPf50) qCPE(!>n) rEZTDM(FjCI) rX?ToM(T 
30)rx2TPN~50)~~YASS(59)~X2TS~5~~,STpFS!~O),x~Fl(5~)~~~~~(~@~,X~Cp~~ 
45O~~F~~~f~~O)r~UMR~5O~~x7TF~~C),f?TF~S~),XlTPF~5O)~E)TP~~=~~~.~2T 
5!‘N (50) ,VEL’-‘(5c?) 

1 REARl5,:’ )~~DlrHS*YE1P(-~~T,W~~,~I.~C,~pF,NAF, 
lPORST,PrC. TP~HSSIFRBIALPE,~LP~,FLA~S. 
ZFSPO,FM~LW,GA~Zt~GAM.K~ ,MMY 

2 F09~A1~7F10.5.21~iPE1~.5/4~1~.5~,??~~ 
~RITF(h.?~)W,Dlr~StYE r~oRT,~nO,nIAC,NFF.YA~ 

20 FOKYAT(lHltSx,33HSTART OF NEW PROBLF’J! (INPl,!T [.PTA,)/// 
llHO,LjY .34dPALLDOM WEIG’+T (TNC. CPEM.) (LpS)=,E 16.41 
21YO,5x.32HPALLOON l-lIAFLTE1 (FT)=,Fl6,F/ 
31H0,5X,?l,~SKIh THICKN~~S(~~IL’)=.~~~.R, 
41HO.5~,7?1~~r)Ol~LlJS c!F ELASTI~~ITy(FSI)=~El~..~/ 
51HO,5Y,I5HP~ISSONS EATIo=,FI~.S/ 
61H075X~.~l~~lNIT1~~7,0F SIIBL,CuEMItALS(Lb~)=,Fl6.~/ 
TlHO,5Y q?oHIYSII?E nIAM.‘.)F CANISTEE (IN)=,Elf,.A/ 
RIHO,SY.?~L{NIJYF~~‘R OF PLt AT FnLr.S=.ls/ 
91HO~5xe73iiN!JMFER n,F ACCOE!JrF!7L?j=.15) 

WRTTF (fIX75)Pf!WST.P<C,ip ,~iS~.Fe~,ALPElALPS,FL~~S 
R25 FORMAT f 

11HO,5X,~~~~~~ESIIlllAL GAS pHESS\!RE (T!?SPl=,Fl6.!7/ 
21HO,SY,:9HCYE~I,CAL G4S PRESj(IFE (Tn9P)=.F16,A/ 
31H0,5Y,74dRALLOfiN TEMPLRATIJ~F (F)=,rlc,F/ 
41HO,5XtP2tiALfITUlIE OF Uf?RIt(YP)=.F!f,.P/ 
51HO,SY..TlY4SPECT RATIO. IF (9) 1 =,Flk.R/ 
61HO,SX.~f,HARS~RB.~F SAT,SK!N TO EARTH ‘-?ApIAT.=,El6.8/ 
?lHO,,SX..76t~ARSQR~.O~~,~SAT,S~IN TO SOLAR P&l7IAT,=,E16.8/ 
BLHO,5X,y6YLATENT HEAT SU~L!MkTIOY(F~LS/6RAt~)=,El~.8~ 

kRITF (h+A26) ESPO,FMOL~~GA~7,CtA~,K.K .YMn 
926 F OR~‘4T ( 

llH0,5X,29t?TOTAL tMIT.COEF.OF !jAT.SKTN=qEl6.R/ 
2lH0,5%,7~1IHOLECULAR WEIGHTrGR~MS/~nLFI=,~l~.~/ 
31HO15~,~0~i~E~~I~INt ARE PRQGR~M C~NTRC;LL v4RIcnLEs1/ 
41H015~.05HGkY2=,F16.9/ 
SlHO,SY,nSHCGA~=rtl~.~/ 
61ti015X,~7!iKY=,15/ 



71tlO,~Y.,t74iiW~=,~~~ 
1’0 756 JJ=l,Kir: 
VELY(JJ!=?.O 
tZT~u(?~)=n,u 
XETF(JJ)=?.O 
F2T~(J.!I=fl.~ 
XITeF(JJ)=fl.O 
CITPF(JJ)=C.O 
F fJ.I)=9,? 
I(J:l=f?.Q 
FP(.!J)=C,q 
XPf JJ)=r..; 
CZT(J:)='?.O 
X2T(JJ,=O,O 
rlTPt.!.!!=0.fi 
r;(JJ)=a?.T! 
F (JJ)=C.C 
X~TPP(.IJ)=O.O 
FTY(.JJ)=t?.fl 
G(JJ)=Q*!? 
xGG(JJ)=?,n 
S(J.J)=".3 
~~TPP~?J\=!!.O 
!MM(JJ)=D.D 
ElT~tJ.!l=g,O 
rYN(.lJ,=q.f7 
k'ti1 (.JJ)"YI.n 
iPX(JJ)=D*t-l 
XYP(JJ)=~,O 
tPE(JJIz9.O 
t2TP'~(J.l~=O.O 
Xi?TP*(JJ)=O.O 
~2T!'~!(JJ)=O.O 
F'MASS( .IJl=n.fl 
~2TF(JJI=G.O 
STRES(JJ)=n.O 
xBRllJJ)=fl,O 
iBRlI.JJ:=3.0 
<BCPF(.JJ)=O.O 

255 XHCaXf !J)=n,!I 



ITRIG=" 
TPK = 755.5 +(5,/9.)*TO 
~C1=(1,+.72o(l.-SQRT(l.-(6~17./(h317r+YSS))~~~)~ *(FfaD+8.;sALPEI(9. 

1"ALPS)))"(l,.3953t+06 "ALPS~FLAHS) 
CC2= ESP@O5.71E-05 -zTPYtrQ4/FLAYS 
cc3= R,3149E+07"TPK/FM3LW 
FMl=W+. 15541 (Dl~~Lil) 
RI= 15.24*01 
PCC=13?4,~PCC 
IA= 2 .uQ~"S~RT(~./(FLO~T(NPF)~FLOAT(NA~)!) 
IB=??.Q39+Dl 

P1=?.14159Zt5 
PHI(b'K)=PI/2. 

PHTf1l=O,o 
CPX(KIo= Rl 
CPx(k)=O.O 

cPE(l)=Fl 
CPEIKK)=O,O 
S(11=0.(! 

EZT(K')=O.O 
flTP(KK)=O.O 

X2T(ll=O.O 
YllP(l)=o.o 

KSlsfK-1 
DO 701 J =2rKSl 
FKP= fL')AT (KK-JI/FL'JAT (KK-1) 
EP(J)= l?l*ATAN (FKB/SQRT (1 ,-FKBae?)) 

703 XP(Jl= FA*C@S (EP(J)/Rl) 
XP(KKl= EA 
EP(l)= RlePI*.5 

YP(l),= O.0 
EP(KKI= fl.O 

NTS3=(ALnr,(Rl/XP(KK))/:~AM2)~1.5 
DO 7111 J3=2,KK 

701 Ij f .J .? ) = S(J3-1) + SQPT ((EP(J3)- Ef'(J3-1))o+2 +(XP(J~)-XP(J~-~))* 
1’>,7) 

S(KK*~)=~.~S(KK)-S(KK-~) 
110 700 J2=2( KS1 
.AAA=(S(J2)-S(J2=1))~'PI/(4.~S(KK)) 

701) PHT(J?)=PtiI(J2-1) +%.*ATAN (AAA/(SQPT (1..AAA+AAA))) 



DO 110 I=lr KK 
G(I)= 0.0 

FTHrI,=r).O 
FlTPfI)=O. 
XlTn(II=O. 

E (I 1 =EP ( I) 
100 XtT)=YPtI) 

DO 7OQ L=2rKSl 
CP%(L)~CPX(L-~)+(S(L)-S(L-~))"COS (IPHI~L-1~+"HI(L))/3r) 

70’3 CPEtL)=SQRT (RlOHl-CPX(L)“CP%(LI) 
IJO 757 KF=l,KSl. 

25r XMN(rF)= 2./3.o(CPX(YF,-~o2+CPX(KF){~CPX(KF+l)+C~~(KF~~)~~2)/(CP%~~F 
l,+CPX("F+l)) 

XMN(YRI=XMN(KK-1) 
uo 950 Jh=2cKSl 

950 Fw(.jG)= FY1/6. n((S(Jh)-SIJh-l))"(CP~(.J~~-l)+?.~~CPX~J~))*(S(J6~1) 
1 -S(J~))"(2,"CPX(J6)+!:PX(.J~+l)}} 

FM’I(l)= FM1/6.0S(2)"CPX(2) 
FMY(KY)= FM113.9 (a-SIKY-l))~}(CpX(Kw-I)+~.~~CPX(CK)) 

FMRz FMl"D1 
FKK=KK 
\'ST=O.fl 
SPRn=g,r! 
I!0 960 J?=lvKSl 
SPR.0 = SPRT)+ 2."(XP(J7!+XP(J7+)))~~(EP(J7+1)) 

960 VST=VS?+(iP(J7)"G2+XP(J7+1) ""2+XP(J7+l).~XP(J7))~(~P(J7)-~P(J7+1)) 
vOt?=2.{~PI*VST/3, 

VNl=VOR 
SPR=SPRn 
POR= POEST oPT"4.QRlQRlarllACn2.54 /(VN\~FL~AT(YPF)~FLOAT(NAF))~ 

11334. 
Pl =POQ+PCC 

DT2 = SqRT (G~~M?~sFMR"',/l'l, 
258 PN=Pl 

FM4=0.n 
fir, 361 LlO=l,KK 
FYA=F'db+FMM(LlU) 

351 FMPSS(LlO)=FMA 
TIME= 0.n 
bJGT=W0!?<>453.6 



\!SSzn. 3 
‘-0 ?h7 LM=lrKsl 

761 VSS=VS~)(CPX(I.M)““~+CPT(Ltl+l)?’ ~~+CP~(L’.!+~)~~CPX(LM))~~C~~~~.M)-C~’E( 
lLM+l) 1 

VSP=2.*PI~VSS/3 . 
\‘OLR=VnQ /VSP 
‘10 970 JR=1 *KS1 

973 Xf,~(J8)=(CPX(J~)+2,s~PX(J~+l)~/(~.{~(CPX(J~)+C~X(J8+1))) 
XGG(r,K)-= XGG(YK-1) 

1’0 771 LQ=l*Kw 
271 FiUM!? (LG? =LrJ 

I’0 ‘68 I.P=I,K?l 
Es{?1 (LP)=E (LPI /HI 

7 6 9 EUCPF. (LPI =5 (I.!‘) /CPE (I.“) 
FbCDF rKu)=l. 
!‘O 769 LQ=ZvKK 

XP,Pl (Lc)=X(Lg)/Kl 
249 XHfPX (LO, =x (LO) /CPX (L’J) 

xt+f,px (l)=l. 
FT=O?!/] 330. 
KHITF(~.,~~~)TIMEIPT,VO~~.(N~~M~?(JK)~X~.~~(JK).~~~~(JK)~ 

lXBCFX(JK),FRCPE(JK)*JK.=lt~K) 
-265 FOPMAT (lH1 e5HTIMk =rE!6.,~..2X.9~3~~55~:~~=~~1~,~,7X~l3H~~L~J’~~ c;s.TIO=q 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
21~7Xr4(F14.9rZX)I) 

I!0 101 N=l,NTS3 
VNlP=V~!l 
sPRP=S?C 
KGTP=w~,T 
PNP=PN 

110 797 ‘-f4=2qKK. 
5 2TPhl (M61 =F2T (M6) 

297 X7TPN (‘46) =XZT (M6) 
IF (“I-l)Sr5,6 

5 DTVl= llT3 
GO TO 7 

h AL!‘Nl= (Y (KK)- XP(KK)I/(X(KK)+XP(KK))02. 
DTNl= GAM?“llTN/ALPNl 

7 DTN =TI?Yl 
FNN=N 



JAK=SGQT (FNV+lS.Ol) 
F!MAY=3'i JAK 
DO 350 KP=l,KY 

xlTPPfYP)= xlTP(WP) 
E1TPPfY.P) =ElTP(KP) 

tP(KP)=F(KP) 
2 5 0 XP('!P)=X(Kf') 

DO 113 M=l,f-wAX 
DO 88s Ll=?,KK 
X2Tf'V(Ll)=XPT(Ll) 

A84 X'-fP(Cl)= X(L1) 
DO 393 LQ=lrKSl 

3 3 '9 f7TPMfl9)=Ei?T (L9) 
K7=1 
KT=2 

.% DO PZO Kl=?,KK 
995 IF(XPrr1)-CPY(K.1)) 102*~21*.~?! 
102 IF(N-1)361,?61~.962 
962 lF( u~l) 96379639961 
963 X~wl)=X~~Kl)+CT~~l"XlT~~~l)+X2TS(Kl)~~T~1~~~TNl/~~ 

GO TO 371 
961 XP(YK+l)=XP(KK-1) 

EP(KK+l)= -EP(KY-1) 
X2TfKl)=~~P~/6.~~~(FpfK1-1)~~~~~1))~~~~~~K1~1)~2.~~x~~Kl))+~~P~~1)-~~ 

l(Kl+l))+t~. "XP(Kl)+xP(K1c1)))crTH(K!)+C(Y1))~FMf~(K1)*~~~~~~(Kl))/.~. 
YtKl)= XP(Kl)+ DTNl~~XlTP(K1) + )'2T(K1);> QlNl"DTNl/?. 

391 IF(X(Cl)~~Px(K1))920*~21~~~1 
821 X?T(V~)=@.O 

IFtTTETG.FQ.1) GO TCl lUO1 
ITRfG=ITHIG+l 

lnO1 X(Kl)=CPX(Kl) 
!F(Yl-KZ-1)731,73C1731 

730 K7=Kl 
KT=Kl 

GO TO 771 
731 <OtjTI tIIIF 

GO TO p?n 
p20 FTHlrl)= 0.0 

DO r.C't-' k'l2=KTlrK 
KA=KK-Kli'+KT 



PC1 q’=’ ?30 Y.f3=1wKK 
KAK"=KA+KR-1 

IF((x(uA-~)-X(KAK~~))~~~~- (S(KA=l,-s(KAK~))bi}2)R2n,~30~~390 
8 ?!I c r) N 1 I \I ' 1 E 
P. 2 s I!=(KP-1) POOq8UOrR29 
P.29 IF~KK+l~KA~KR)99lr8?1.~3I 
e31 KRH,Kt~-l 

iln A4Q ~C=l~KPP 
KARr= IcG+KC-1 
KAn=KA+rlnR 

~40 x fw nrjc) = X~~,&P)-~S(KA~~-S~KAPC))~~%~K~~~~~~KA-~~)/~S~K~~~~S~ 
lrA-1,) 

GO TO ~00 
ROD CONTIKI~F 

Iln 104 K3=1.KSl 
KKK=KK-if.3 

r!SM'-lX = (,~(KKK~1)-S(KK~))?'"%-o!tKKK+l)-X(lr KY.))"'+7 
lC4 E(r.k'K)= F(YKK+l) +jQhT (fJS!'PX) 

PSIT=FI-X(KK) 
If(PS~T).?P113P1,737 

7:Jf COUTI~!l~F 
DO 105 K4=1,KSl 

1 n5 E2T("4)=(( t:(K4) - Cp(K4)- l:IT~(~,4)~~DTY1)~Z./(DTNl~DTNl~ + 
1 E2Tpf.'(K4))/2, 

7'33 JFt"-J4K)lOtlOvll 
il DO RYQ L2=2rKK 

TCGhMZ AAS ((x(L~)-X~P~~~))~~.,(XIL~)+XM~~L~)~)-CGAM 
IF tTCGCY)3,9~889 

889 CnNTlNtlE 
10 cl(I)= -FMM(l)~EZ7(1) 

Dn 106 r5=2 ,KK 
106 O(K5)= rl(Y5-1) -FMM(Ks)"E?T(K~) 

E fKK+l) =-E(KK-1) 
?n ln7 K6=2qKSl 

197 F(K~)=(X(K,~tl)~X(Kh))/(E(K6)-~fK~+l~)~(~~/~.~~(XP(K~)+X~~(K~)~~(Xp 
l(K6+1)-XP(K6)i)o"2+Q(~6)) 

F(KK)= -F(KK-1) 
F(l)= Y(2)/(E(l)-E(Z) )afz. "P"I/~.I~XF(;,)~:-~~-FM!~(~)~~E~T(~)) 

X(KK+~)= XtKK-1) 
00 1nR K7=2,KK 

., 



1 

lOA G(u71= F(Kf)- F(KI-1) 
IF(~~AX-~~200,20u,llZ 

ll? Cr)h(TINIJE 
Dn 109 KR=Ktr KK 

13: ~llP~K~~=XlTP~~K~)+XZl~K6~~Dl~l 
tl0 ll@ KS=l,KSJ 

110 ~lTP(~~)=ElTP?(K9)+EZr(K9)~nT~l 
IF(K7-1)331,3Rlt382 

392 ElA=O.O 
DO 357 Ll?=lrKZ 
ElA=ElA+ ElTP(Ll?)~FY~4(L17)/FYASS(KZ) 

351 FlfPfKl)=FlA 
355 DO 261 L7=1*KZ 
251 XITP (Lt)= 0.0 

DO 76t LR=lrKl 
262 ElTPfLS)= ElTPfKZ) 
381 . vst rfl.0 

wa=u.o 
IV) 111 K10=1 -KS1 

SPR= SPF + 2~~(X(K10)+~(KlO+l))s(E(K~O)-E(K~O+~l)) 
111 vst= VST + ~~~‘K1Il~~X~-~.10~+X~~10+1~~X.(K.10+1)+%~K10*1~~~~~10))~t 

1 EtKlB)-F(K\O*l) 1 
VNl= 7,~PI*vST/Sr 
KIlRl= YIK.K)/?l 

SSS=P?*(30,4fl*D))-2 
UEL wt = (CclOSPP -CC2QSSS, e?TNl 
IF(~F~WT.~~,O.O)UFLW~=U,O 
IFfW6TD -DELWt) E7O~I!7~:,!!71 

e70 WCT r0.n 
W:AP(lt 3 
f!RACE =0.0 
GO tf? PTS 

et1 WGf = WGt? - DELWT 
co ICI R79 

r)ti! BRC.2 = cc3 = DiLld7 
BRC.1’ = PCCotVNl-VNlP) 
IFfRRC3-~RCl)e73~973ca74 

873 8RAcF = RRC? 
MARK= 2 
GO TT! “75 



3 f L !-! ) :: !15 1 ) 
ST~C~(rr!=jTPtjfKY-l: 
PSJT=El-X(wK) 

IF (DY.IT) 13,13,12 
1% IF f N?f!:+-FJ) 203,EO3,14 

101 Cr:h!T 1 h.:I!F 
14 IFiN-1) 2:2r131Z72 

272 IF(!TKIC,‘Q.I) GO TL! !tlO’j 
IF(~~C~(~rrlMY))3i~~rl~,379 

1.005 ITPIG=lT=IG+~ 
13 110 375 1F=l*KSI 

FBI41 (LF)=F(LF)/Rl 
775 FBCoF(LFI=E(LFI/CpE(LFI 

FbCPF fWK)=1, 
I10 376 LG=?qCY 
xBK1 (LG)=Y (LG) /El 

?76 XBCpt (L6) =X i1.C) /CPX (LG) 
XEC~XfI!=I. 
PT=?hf/19’?4, 
IF(p~I?)~~P,9~2,Y33 

932 Ul) 024 LF’=l.KK 

X~T(LM)=X?TPN(LM) 
a34 F 2T (LM) =F2TPN (1.M) 

GO Tf? Q?? 
933 [IO 0.30 LS=l.KK 

r2TF ILC;)=Y2T (LS) t3fl.46 
E2rrcLS)=E~T(LS)/30.4R 
XiiOF (LS) =.x110 (LS) /3L’.‘b8 
tlTpF(LS,=Ellp(LS)/3@.4~ 

430 VELYfLS)=Sn9T(XlTPF(LS!oX1TPF(LS)+F 
k’ZT = iiGT/453.6 
wf?!TF fh.307)TIYE,PT?VCLp,Nll’syZT? 



lXBCpX(JJ) ,ERCPE(Jj).STf'ES(JJ). JJ=:rKb.) 
307 FORVLT (lt~l,SHTIMt=,E16.B,Zw .‘~t’PRESS\.!Ft= ,Flh.P,ZX, ~.~HVC!LU~'E RATIO=, 

lE16.R,?X,ZHN=,I4,2XI2HY=rI4 
Z//~XT~~~CHEMICAL WEIGHT REMATN!NG=,Elh.B 
3 //~X9HPT.NIJ~RERllx~Hx/El13X4~~/~ll~X~HX~CPXl3X5~E~CPEl2~~6HST 
4RESS///(qX,I2,7X.5(EIS.R,2r))) 

kRIrF(~.93l)‘(N~)M~~(JJ) vXtTF(J,') .F:ZTF(c'.j) *YllPF (J,J)*FlTFF(JJ),VELM 
l(JJ)vJJ=l,KK) 

931 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1~///17~.~2,7X,5(Cl6.~,?x) 1) 

279 IF (PSIf)74n,740t295 
74(1 TKE=. 5"FMM(K~)~~XlTPF(~r)~~XlT~F(KK} 

TXM= F t' 5 ( K r, ) -Z X 1 1 P F ( Y K 1 3 . 5 
. . 
uo 721 I?=l,wsl 
TKF = TYE + FMM(I~)~~~ELY(I~)E;:~ 

721 TX'4 =TYP +\ FM~(I2)+'~.lTf'F(?Z) 
TKk z TYFt:3,14159"4./ ('H9451.t) 
TXM = TY+l::16,/(tiQ45j.h) 
SWOSQ = fi.~(l.+P~!RT:s3,1~1~9~~.‘~F~~t~~,/( (1 .IPoRT.~~~~)~(w/~R~.~)~~~~~ 

10.1 
SW0 =soPT (sk;oso) 
OMr?Sfi= ?.+ 1.5fi(l,+PC'FsT) -fCuT(4,+3,r.(l,+2./~F~OT)~~(l,+P[j~T)+~~.5~~( 

1 l.+FfiCTI)**2) 
swzsc = OM2S~a4."3.1~1~?~YF"~S~((l.nF~~T~~i)~(W/3~~.~)~~1~0~,) 
SW7 =SORT(SY?SG) 
pOTl=l.+PQPT 
ALPG = flM2SO/FJOTl 
bAr: = .2:‘(1,+ (2,- ALf’L’)*;sT) d (,125+(3.-AL-‘c) )::“2 
PDQ = .75-z (3. -ACP(-J) i.:‘Tr,‘.I 
CCQ = - (TXMaf52 -1KE) 
YMS =I-PPQ -SQh!T(r!eQc.it? + 4,~~A:~~~CC~))/(7,~~A,bC) 
XMS = TX!’ l .125nt3. -ALPQ)', V#S 
CWO = YYS/SWO 
cw2 = YMS/SW? 
SPSC = PT~~~1~1000.~12.~,019,~~/~~,~HS) 
.SCV].= VE02,/ ( (1,.PCJPT+;‘?) is?) ) 
SCOF.?= APS(CWO)+ POT! 
SCOF3= (?.~PnTl-O~2S~)/pOT1 
SIG’, = spsc +sCok l*(bCfIFi? + iPS(Ck7)~~0M250/2.) 

SIGP = S”SC -SCOFl”( SCf'F2 ~."YABS(C~7"(-POTi+SCOF3)))) 





APPENDIX C 
PARAMETRIC CURVES 

The curves in this appendix have been determined for two 
typical balloons of'the following characteristics: 

PAGEOS ECHO II 

Diameter, ft 
Skin Thickness, mils 
Total Weight (incl chemicals),lb 
Canister Diameter, in. 
No. of Accordion Folds 
No. of Pleat Folds 

-2 Modulus of Elasticicy, lb in. 
Subliming Chemical 

Weight of Subliming Chemical,lb 

100.0 135.0 
0.50 0.71 

147.5 493.8 
26.5 28.0 
85.0 85.0 

418.0 360.0. 
6.6~10~ 2.73~10~ 

Benzoic Benzoic 
Acid Acid 

10.0 52.4 

Note on the velocity and stress diagrams.- Figures 8 
through 16 are plots of velocity versus time and stress versus 
time for the PAGEOS and ECHO II: satellites. It should be noticed, 
however, that while Figure 8 gives the velocity of the tip (pole) 
of the balloon during the deployment stage, which happens to be 
the largest velocity at every instant, Figures 12 and 14 give the 
greatest of the moduli of the velocities of the points in the 
meridian, regardless of location. 

Figure 9 shows the value of the hoop stress at the equator 
during deployment, while Figures 13 and 15 give the maximum value 
of the meridian stress, regardless of position, for the inflation 
stage. Moreover, while it is apparent that inflation will likely 
start before the balloon has reached full deployment, the present 
state-of-the-art does not provide a means of determining exactly 
when this will occur. Hence, it was considered that the inflation 
stage started from rest, and the initial shape is the one attained 
at 100 percent deployment. 
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Figures 10 and 11 are plots of the tip velocity and merid- 
ian stress at the equator that will occur, if the balloon was 
allowed to reach full deployment and if all the kinetic energy 
was to be absorbed by the elastic deformation of the skin. This 
is a conservative estimate that will certainly give stresses 
larger than the actual ones. 

Figure 16 is a representative plot of the stresses after 
inflation has been completed. The.assumption is that all the 
kinetic energy of the skin is absorbed by the elastic deforma- 
tion and again gives a conservative estimate as it assumes only 
two of the numerous modes of vibration, and neglects completely 
any structural dampling. The values given by the computer pro- 
gram are the absolute maximum that the stresses can attain under 
these assumptions, regardless of the time. It must be noticed 
that, as the ratio between the two natural frequencies cue and a2 
is not, in general, a rational number, the time of the absolute 
maximum will be infinite. On the other hand, the presence of 
structural damping will have the effect that for a large time 
the system will come to rest, hence, the calculated values will 
be conservative. 

Table II gives the tip velocity at the end of the deploy- 
ment stage as obtained from the computer program and also the 
values of the reference stress 

used to adimensionalize the stresses in Figure 11. Table III 
gives the absolute maximum value that the stresses can attain 
after the end of inflation, as obtained from the computer pro- 
gram. These values were used in the plots of Figure 16. 
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Figure 8 Tip Velocity versus Time for the Deployment Stage 
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Figure 9 Equatorial Hoop Stress versus Time for the Deployment 
Stage 
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Figure 10 Dimensionless Tip Velocity versus Time at the End 
of Deployment Stage 

111 



1.0 

e 
b 

0.5 

0. 

PAGEOS 
--- ECHO II 

I I 
02 0.03 0.04 

t (set) 

Figure 11 Dimensionless Equatorial Meridian Stress'versus Time 
at the End of Deployment Stage 
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Figure 12 PAGEOS - Maximum Velocity versus Time for the Inflation Stage 



dpsi) 

Residual Gas Pressure 
torr TempGature 

1 1.0 32 
100 
150 
150 
150 

L 
3 4 5 6 7 8 

t(sec) 
1 2 

Figure 13 PAGEOS - Maximum Meridian Stress versus Time for the Inflation Stage 
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Figure 14 ECHO II - Maximum Velocity versus Time for the Inflation Stage 
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Figure 15 ECHO II - Maximum Meridian Stress versus Time 
for the Inflation Stage 

1.1.6 



PAGEOS 
--F-- ECHO II 
Residual Gas Pressure 

1.0 torr 
Temperature 100°F 

I 
I 
I 

I I 
0.01 0.02 

t(sec) 

(42 7rh 
8 I % max 

0.5 

I 
I 
I 
I 
II I 

0.01 0.02 
t (set) 

I 
I 
I 

I I 
0.01 0.02 

t (set) 

Figure 16 Dimensionless Stresses versus Time at the End of Inflation 
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Figure 17 Deployment versus Time 
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Table II 
TIP VELOCITY AND REFERENCE STRESS AT THE END OF THE DEPLOYMENT STAGE 

PAGEOS 1 ECHO II 

Residual gas 
pressure(torr) 1.0 1.0 0.5 1.0 1.5 1.0 1.0 0.5 1.0 1.5 
Temperature 
('0 32.0 100.0 150.0 150.0 150.0 32.0 100.0 150.0 150.0 150.0 
ii(tt!sc) 16.99 17.33 19.27 19.27 20.29 33.32 33.46 34.35 34.54 34.74 

(psi) 2152.6 2195.7 2441.5 2507.4 2590.7 9766.0 9807.1 10068.0 10123.7 10182.3 

Table III 
I--L MAXIMUM STRESSES AFTER THE END OF INFLATION 
8 (Absolute Maxima) 

PAGEOS I ECHO II 

Residual gas 
pressure(torr) 1.0 1.0 0.5 1.0 1.5 1.0 110 0.5 1.0 1.5 
Temperature 
("0 32.0 100.0 150.0 150.0 150.0 32.0 100.0 150.0 150.0 150.0 

E c-7 0 $ 

72 

967.4 2377.0 1877.3 1885.7 1894.0 1770.0 6561.8 3445.4 3443.6 3443.1 

g u&nx 836.6 2079.5 1649.5 1657.7 1665.7 1484.1 5567.6 2944.7 2943.0 2942.5 
m '4 
6 n/2 f: uemx 

1251.5 3023.2 2371.8 2380.7 2389.7 2327.2 8499.1 4421.2 4419.1 4418.6 

I I 
D 


